Task	R2	ABC	KOLONE	SJECISTA	STOL	STRAZA
Input	standard input (keyboard)					
Output	standard output (screen)					
Memory limit (heap)	32 MB	32 MB	32 MB	32 MB	32 MB	32 MB
Memory limit (stack)	8 MB	8 MB	8 MB	8 MB	8 MB	8 MB
Time limit (per test)	1 sec	1 sec	1 sec	1 sec	1 sec	1 sec
Number of tests	10	10	10	10	10	10
Points per test	1	2	4	4	8	11
Tatal nainta	10	20	40	40	80	110
Total points			3(300		

Note: The time limit is based on a computer running two AMD Athlon MP 2600+ processors and Linux operating system.

C and C++ programs will be compiled with the following options: -O2 -lm -static Pascal programs will be compiled with the following options: -O1 -XS

The number S is called the **mean** of two numbers R1 and R2 if S is equal to (R1+R2)/2. Mirko's birthday present for Slavko was two integers R1 and R2. Slavko promptly calculated their mean which also happened to be an integer but then lost R2! Help Slavko restore R2.

Input

The first and only line of input contains two integers R1 and S, both between -1000 and 1000.

Output

Output R2 on a single line.

input	input
11 15	4 3
output	output
19	2

You will be given three integers A, B and C. The numbers will not be given in that exact order, but we do know that A is less than B and B less than C.

In order to make for a more pleasant viewing, we want to rearrange them in the given order.

Input

The first line contains three positive integers A, B and C, not necessarily in that order. All three numbers will be less than or equal to 100.

The second line contains three uppercase letters 'A', 'B' and 'C' (with no spaces between them) representing the desired order.

Output

Output the A, B and C in the desired order on a single line, separated by single spaces.

input input 1 5 3 ABC 6 4 2 CAB output output 1 3 5 6 2 4

3. KOLONE

When moving, ants form rows so that each ant except the first is behind another ant. It is not widely known what happens when two rows of ants moving in opposite directions run into each other in a passage too narrow for both rows to pass through. One theory says that, in that situation, ants will jump over each other.

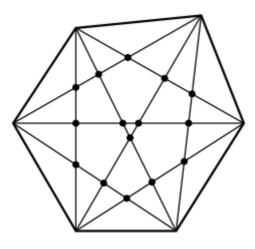
From the moment the rows meet, each second every ant jumps over (or gets jumped over, as they agree upon) the ant in front of himself so that the two ants swap places, but only if the other ant is moving in the opposite direction. Find the order of the ants after T seconds.

Input

The first line contains two integers N1 and N2, the numbers of ants in the first and second rows, respectively.

The next two rows contain the orders of ants in the first and second row (first to last). Each ant is uniquely determined by an uppercase letter of the English alphabet (this letter is unique between both rows).

The last line of input contains the integer T ($0 \le T \le 50$).


Output

Output the order of the ants after T seconds on a single line. Our viewpoint is such that the first row of ants comes from our left side and the other one from our right side.

input	input	input
3 3 ABC DEF O	3 3 ABC DEF 2	3 4 JLA CRUO 3
output	output	output
CBADEF	CDBEAF	CARLUJO

Consider a convex polygon with N vertices, with the additional property that no three diagonals intersect in a single point. Find the number of intersections between pairs of diagonals in such a polygon.

The figure below shows one such polygon with 6 vertices.

Note: a polygon is convex if all of its interior angles are less than 180 degrees.

Input

The first and only line of input contains a single integer N, $3 \le N \le 100$.

Output

Output the number of intersections on a single line.

input	input	input
3	4	6
output	output	output

5. STOL

Mirko has bought an apartment and wants to invite to dinner as many people as possible to celebrate with him. For this he needs a large rectangular wooden table for which he will sit down with his guests. The number of people a table can accommodate is equal to its perimeter (the sum of the lengths of all four sides). Mirko wants to buy a table such that it fits in his apartment and that as many people as possible can sit down with him for dinner. The table must be placed so that its edges are parallel to the edges of the apartment.

Given the layout of the apartment, find the number of people Mirko can invite to dinner.

Input

The first line contains two integers R and C ($1 \le R, S \le 400$), the dimensions of the apartment.

Each of the following R rows contains exactly S characters (without spaces), whether a square is free ('.') or blocked ('X').

Mirko can put his table only in free squares.

Output

Output the number of guests Mirko can invite to dinner after he buys his table on a single line.

input	input	input
2 2	4 4	3 3
	X.XX	X.X
	ХХ	.X.
	X.	X.X
output	XX	
		output
7	output	
		3
	9	

6. STRAŽA

Near a military base there is a system of trenches, modeled as line segments on a plane. During nighttime, when most soldiers are fast asleep, three guards stand watch of the trenches. Two guards can see each other if there is a trench (or a row of trenches) along the entire straight line segment between them and there is no third guard on that line segment.

For security reasons, the guards must be placed so that each guard sees the other two. How many ways can they be placed?

Input

The first line contains the integer N ($1 \le N \le 20$), the number of trenches. Each of the next N lines contains the description of one trench: four positive integers X1, Y1, X2, Y2 (all less than or equal to 1000), where X1 and Y1 are coordinates of one end, while X2 and Y2 are coordinates of the other end of the trench.

Trenches in the input may overlap and share endpoints.

Output

Output the number of ways the guards can be placed on a single line.

input	input	input
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 1 7 1 1 1 5 1 4 0 4 4 7 0 3 4 output	3 2 2 3 2 3 2 3 3 3 3 2 3 output
output	1	
8		