

Final version 23-Apr-2004

SHIPS

 The board of "Ships" game consists of N*N squares.
Each square may belong to some ship or be empty. If two
squares belong to ships and have common edge, then both
squares belong to the same ship. Squares of different ships
have no common points. Tonnage of ship is number of
squares belonging to this ship.

In the given example squares belonging to ships are
marked black and on the game board there are: one 29-ton
ship, three 7-ton ships, two 4-ton ships and three one-ton
ships.

Task
Write program which for given description of game

board calculates number of ships and tonnage of each ship.

Input
In the first line of text file ships.in one positive integer N (N<30000) is given.
In each of next N input file lines there is given information about one board row, consecutively

describing groups of squares from left to right, which belongs to ships in one of two formats:
• <number_of_square_column>

, if square in given column belongs to ship, but squares to the left and to the right are free;
• <number_of_first_square_column>-<number_of_last_square_column>

, if all consecutive squares from first to last (including) belongs to ship and squares to the left
and to the right from this group are free.

Square groups are separated by commas, each line ends with semicolon. There are no spaces in
lines. If in some board row there are no ship's squares, then corresponding file line contains only
one semicolon. It is known that total number of ships does not exceed 1000 and tonnage of any ship
does not exceed 1000 tons.

Output
In the text file ships.out your program must output information about ships. In each file line

there must be exactly two integers separated by space symbol. First number must be tonnage and
second must be number of ships having this tonnage. Tonnages must be given in decreasing order
and tonnage must be outputed only if there is at least one ship having this tonnage.

Example (corresponds to given example)
ships.in ships.out
12
2-4,7,9;
1,4,11-12;
1,4,10,12;
1,4-8,10-12;
1,8;
1,3-6,8,10-12;
1,3,5-6,8,11;
1,8,10-12;
1-8;
;
2;
2-4,7-10,12;

29 1
7 3
4 2
1 3

1
2
3
4
5
6
7
8
9

10
11
12
 1 2 3 4 5 6 7 8 9 10 11 12

 DAY 1 (22-APR-2004)
ENGLISH VERSION

Final version 23-Apr-2004

SCALES

You are given an equal arm scales, a set of weight pieces and an object. The pieces are of
weight 1,3,9,27,81,..., i.e. the weight of each piece is a power of 3, and for each integer k≥0 there is
exactly one piece of weight 3P

k
P. The object’s weight is m, where m is a positive integer. Your task is

to put the object on the left scale pan and to put some pieces on one or both scale pans, so that the
scales is in balance.

Task

Write a program that:
• reads the object’s weight m from the text file scales.in,
• calculates which pieces should be put on the left and right scalepan,
• writes the results to the text file scales.out.

Input

The first line of the input file scales.in contains one integer m, 1≤ B

 B

m≤10P

100

Output
The output file scales.out should consist of two lines.
The first line should contain information about pieces put on the left scale pan. First number

must be non-negative integer - number of pieces put on the left scale pan followed by weights of
pieces in increasing order. Numbers must be separated by single spaces.

The second line must contain information about pieces put on the right scale pan in the same
format as first line.

Examples

scales.in scales.out
42 3 3 9 27

1 81

scales.in scales.out
30 0

2 3 27

 DAY 1 (22-APR-2004)
ENGLISH VERSION

Final version 23-Apr-2004

SEQUENCE

UShort formulation.U The number sequence is given. Your task is to construct the increasing
sequence that approximates the given one in the best way. The best approximating sequence is the
sequence with the least total deviation from the given sequence.

UMore precisely.U Let tB1 B, t B2B, …, t BNB is the given number sequence. Your task is to construct the
increasing number sequence zB1 B < z B2 B< …< z BN .B

The sum |t B1 B- zB1 B| + |tB2 B- z B2B| + … + |tBN B- z BNB| should be a minimal feasible.

Input

There is the integer N (1≤N≤1000000) in the first line of input file seq.in. Each of the next N
lines contains single integer – the given sequence element. There is tBKB in the (K+1)-th line. Any
element is satisfying to relation 0≤tBKB≤2000000000.

Output

The first line of output file seq.out must contain the single integer – the minimal possible total
deviation. Each of the next N lines must contain single integer – the recurrent element of the best
approximating sequence.

If there are several solutions, your program must output any one sequence with a least total
deviation.

Example

seq.in seq.out
7
9
4
8
20
14
15
18

13
6
7
8
13
14
15
18

DAY 1 (22-APR-2004)
ENGLISH VERSION

