
Solution Outlines

SWERC Judges

SWERC 2011

SWERC Judges Solution Outlines SWERC 2011 1 / 50

SWERC 2011 Statistics
First team solving the problem

Problem 1st team solving Time
D - Distributing Ballot Boxes UPC-1 17
H - Peer Review ENS Ulm 1 27
G - Non-negative Partial Sums ETH Tautology Club 38
J - Remoteland ETH Tautology Club 47
F - Guess the Numbers ETH Tautology Club 55
I - Regular Convex Polygon ENS Ulm 3 75
E - Game, Set and Match ETH Tautology Club 143
C - Cybercrime Donut Investigation UPC-1 213
A - Alphabet Soup ? ?
B - Coin Collecting ? ?

SWERC Judges Solution Outlines SWERC 2011 2 / 50

SWERC 2011 Statistics
Correct/Submissions Rate

Problem Correct Submissions Rate
A - Alphabet Soup
B - Coin Collecting
C - Cybercrime Donut Investigation
D - Distributing Ballot Boxes 24 98 24%
E - Game, Set and Match 12 17 71%
F - Guess the Numbers 19 38 50%
G - Non-negative Partial Sums 18 70 30%
H - Peer Review 30 127 24%
I - Regular Convex Polygon 9 64 14%
J - Remoteland 11 38 29%

SWERC Judges Solution Outlines SWERC 2011 3 / 50

SWERC 2011 Statistics
Correct/Submissions Rate

Problem Correct Submissions Rate
A - Alphabet Soup 0+? 10 ?%
B - Coin Collecting 0+? 5 ?%
C - Cybercrime Donut Investigation 1+? 133 ?%
D - Distributing Ballot Boxes 24 98 24%
E - Game, Set and Match 12 17 71%
F - Guess the Numbers 19 38 50%
G - Non-negative Partial Sums 18 70 30%
H - Peer Review 30 127 24%
I - Regular Convex Polygon 9 64 14%
J - Remoteland 11 38 29%

SWERC Judges Solution Outlines SWERC 2011 3 / 50

SWERC 2010 Statistics
We’ve been nice this time. . .

Problem Correct Submissions Rate
A - Lawnmower 35 69 51%
B - Periodic points 0 6 0%
C - Comparing answers 6 122 5%
D - Fake scoreboard 1 26 4%
E - Palindromic DNA 1 5 20%
F - Jumping monkey 6 64 10%
G - Sensor network 0 10 0%
H - Assembly line 3 35 9%
I - Locks and keys 2 19 11%
J - 3-sided dice 3 106 3%

SWERC Judges Solution Outlines SWERC 2011 4 / 50

A - Alphabet Soup: solution is trivial ;)

Classification
Difficulty: Hard
Method: Combinatorics, Polya Counting

Task
1 Compute the smallest turning such that the rotation is valid.
2 Do the general counting with this observation.

1 Sort the angles by increasing order (P log P).
2 If «no rotation» return SP mod 100,000,007 (log P with fast

exponentation).

SWERC Judges Solution Outlines SWERC 2011 5 / 50

A - Alphabet Soup: solution is trivial ;)

Classification
Difficulty: Hard
Method: Combinatorics, Polya Counting

Task
1 Compute the smallest turning such that the rotation is valid.
2 Do the general counting with this observation.

1 Sort the angles by increasing order (P log P).
2 If «no rotation» return SP mod 100,000,007 (log P with fast

exponentation).

SWERC Judges Solution Outlines SWERC 2011 5 / 50

A - Alphabet Soup: rotation
Approach 1:

I Take the P2 distances between the points and try them all (Ω(P3)
TLE).

Approach 2:
I Fix a point.
I Consider the P distances to the rest (Ω(P2) TLE).

Approach 3:
I Let the pasta pieces be situated at pi , i = 0, . . . ,P − 1.
I Consider the differences between adjacent pasta pieces

di = pi − pi−1, where the indices are taken modulo P.
I Let s be the “string” formed by d1d2 . . . dP .
I If s occurs twice in ss, then there are no possible rotations.
I If not, let k be the smallest positive number such that di+k = di for

all i .
I To compute this, use any of your favourite string-searching

algorithm like Knuth-Morris-Pratt, Boyer-Moore or other O(P)
variants.

I Other possibilities: try all divisors of P or N, very fast in practice.

SWERC Judges Solution Outlines SWERC 2011 6 / 50

A - Alphabet Soup: eureka!

Define the application g as the rotation by d1 + d2 + . . .+ dk .
g is a permutation of k cycles of P

k elements each (k divides P).
Use Burnside’s Lemma and count how many fixed points there are
by the action of g i (g iterated i times):

I For each of the cycles, g i has Sgcd(i, P
k) fixed points.

I As we have k cycles, g i has Sk gcd(i, P
k) fixed points.

The expected result is:

k
P

P/k−1∑
i=0

Sk gcd(i,P
k)

Compute 1
P applying the Fermat’s Little Theorem to obtain

1
P = P100,000,007−2 mod 100,000,007.

SWERC Judges Solution Outlines SWERC 2011 7 / 50

B - Coin collecting

Statement
Pick the maximum number of envelopes subject to the following
conditions:

At most one envelope from each of m pairs.
No non-empty subset contains an even number of coins from
every country.

Categories: graphs, matroid intersection
Difficulty: very hard (I mean, impossible)

SWERC Judges Solution Outlines SWERC 2011 8 / 50

B - Coin collecting - Graph translation

Construct an undirected graph G = (V ,E) with V = countries.
Think of envelopes as edges (each envelope has coins from two
different countries).

We need to pick at most one edge from every pair.
No non-empty subset of E has all vertices of even degree.

What to make of the last condition?
All vertices in a subset of E have even degree⇔ we can find a circuit
in E !
The condition becomes: E is acyclic, i.e E is a forest (union of
vertex-disjoint trees).

SWERC Judges Solution Outlines SWERC 2011 9 / 50

B - Coin collecting - Graph translation

Construct an undirected graph G = (V ,E) with V = countries.
Think of envelopes as edges (each envelope has coins from two
different countries).
We need to pick at most one edge from every pair.

No non-empty subset of E has all vertices of even degree.

What to make of the last condition?
All vertices in a subset of E have even degree⇔ we can find a circuit
in E !
The condition becomes: E is acyclic, i.e E is a forest (union of
vertex-disjoint trees).

SWERC Judges Solution Outlines SWERC 2011 9 / 50

B - Coin collecting - Graph translation

Construct an undirected graph G = (V ,E) with V = countries.
Think of envelopes as edges (each envelope has coins from two
different countries).
We need to pick at most one edge from every pair.
No non-empty subset of E has all vertices of even degree.

What to make of the last condition?

All vertices in a subset of E have even degree⇔ we can find a circuit
in E !
The condition becomes: E is acyclic, i.e E is a forest (union of
vertex-disjoint trees).

SWERC Judges Solution Outlines SWERC 2011 9 / 50

B - Coin collecting - Graph translation

Construct an undirected graph G = (V ,E) with V = countries.
Think of envelopes as edges (each envelope has coins from two
different countries).
We need to pick at most one edge from every pair.
No non-empty subset of E has all vertices of even degree.

What to make of the last condition?
All vertices in a subset of E have even degree⇔ we can find a circuit
in E !
The condition becomes: E is acyclic, i.e E is a forest (union of
vertex-disjoint trees).

SWERC Judges Solution Outlines SWERC 2011 9 / 50

B - Coin collecting - First attempt
Problem, restated
Pick as large a subset E of edges as possible subject to the following
conditions:

At most one edge from each of m pairs.
E is acyclic.

Doesn’t even look like this has a poly-time solution!
Hint: keep making choices as new pairs of edges arrive, and “change
your mind” about the previous choices if necessary
Algorithm:

1 E ← ∅
2 for each pair of candidate edges (e1,e2)

3 if E + e1 is acyclic, E ← E + e1;
4 else if E + e2 is acyclic, E ← E + e2;
5 else change your mind?

SWERC Judges Solution Outlines SWERC 2011 10 / 50

B - Coin collecting - First attempt
Problem, restated
Pick as large a subset E of edges as possible subject to the following
conditions:

At most one edge from each of m pairs.
E is acyclic.

Doesn’t even look like this has a poly-time solution!

Hint: keep making choices as new pairs of edges arrive, and “change
your mind” about the previous choices if necessary
Algorithm:

1 E ← ∅
2 for each pair of candidate edges (e1,e2)

3 if E + e1 is acyclic, E ← E + e1;
4 else if E + e2 is acyclic, E ← E + e2;
5 else change your mind?

SWERC Judges Solution Outlines SWERC 2011 10 / 50

B - Coin collecting - First attempt
Problem, restated
Pick as large a subset E of edges as possible subject to the following
conditions:

At most one edge from each of m pairs.
E is acyclic.

Doesn’t even look like this has a poly-time solution!
Hint: keep making choices as new pairs of edges arrive, and “change
your mind” about the previous choices if necessary

Algorithm:
1 E ← ∅
2 for each pair of candidate edges (e1,e2)

3 if E + e1 is acyclic, E ← E + e1;
4 else if E + e2 is acyclic, E ← E + e2;
5 else change your mind?

SWERC Judges Solution Outlines SWERC 2011 10 / 50

B - Coin collecting - First attempt
Problem, restated
Pick as large a subset E of edges as possible subject to the following
conditions:

At most one edge from each of m pairs.
E is acyclic.

Doesn’t even look like this has a poly-time solution!
Hint: keep making choices as new pairs of edges arrive, and “change
your mind” about the previous choices if necessary
Algorithm:

1 E ← ∅
2 for each pair of candidate edges (e1,e2)

3 if E + e1 is acyclic, E ← E + e1;
4 else if E + e2 is acyclic, E ← E + e2;
5 else change your mind?

SWERC Judges Solution Outlines SWERC 2011 10 / 50

B - Coin collecting - Questioning previous choices

We try to add edge e to E :
if E + e is acyclic, done
otherwise pick an edge f1 in the unique cycle C(E + e) of E + e
and remove it to form E + e − f1.
After removing f1, the “companion” edge f ′1 becomes free.
If E + e − f1 + f ′1 acyclic, done (E has been increased by one).
Otherwise pick f2 in a cycle of E + e − f1 and repeat. . .

This has a similar flavor to the bipartite matching algorithms.

SWERC Judges Solution Outlines SWERC 2011 11 / 50

B - Coin collecting - Questioning previous choices

We try to add edge e to E :
if E + e is acyclic, done
otherwise pick an edge f1 in the unique cycle C(E + e) of E + e
and remove it to form E + e − f1.
After removing f1, the “companion” edge f ′1 becomes free.
If E + e − f1 + f ′1 acyclic, done (E has been increased by one).
Otherwise pick f2 in a cycle of E + e − f1 and repeat. . .

This has a similar flavor to the bipartite matching algorithms.

SWERC Judges Solution Outlines SWERC 2011 11 / 50

B - Coin collecting - Almost there
New goal
Find a sequence of edges e, f1, . . . , ft such that
(E + e)− f1 + f ′1 − f2 + f ′2 . . .− ft + f ′t is acyclic and has size |E |+ 1.
(this is called an augmenting path)

To do so, we want all graphs (E + e)− f1, (E + e)− f1 + f ′1 − f2, . . . to
be acyclic.

Caveat
The graph changes as we add/remove edges.
We do not want to backtrack over the new graphs formed, so we’d
like to check for cycles in E + f ′i alone.
But it is possible that the unique cycle C(E + f ′i) involves a
previously removed fj , j < i . Cannot remove an edge twice!

How to solve? Just enforce the last condition: we only add edges
whose cycles do not involve previously removed edges.

SWERC Judges Solution Outlines SWERC 2011 12 / 50

B - Coin collecting - Almost there
New goal
Find a sequence of edges e, f1, . . . , ft such that
(E + e)− f1 + f ′1 − f2 + f ′2 . . .− ft + f ′t is acyclic and has size |E |+ 1.
(this is called an augmenting path)

To do so, we want all graphs (E + e)− f1, (E + e)− f1 + f ′1 − f2, . . . to
be acyclic.

Caveat
The graph changes as we add/remove edges.
We do not want to backtrack over the new graphs formed, so we’d
like to check for cycles in E + f ′i alone.
But it is possible that the unique cycle C(E + f ′i) involves a
previously removed fj , j < i . Cannot remove an edge twice!

How to solve?

Just enforce the last condition: we only add edges
whose cycles do not involve previously removed edges.

SWERC Judges Solution Outlines SWERC 2011 12 / 50

B - Coin collecting - Almost there
New goal
Find a sequence of edges e, f1, . . . , ft such that
(E + e)− f1 + f ′1 − f2 + f ′2 . . .− ft + f ′t is acyclic and has size |E |+ 1.
(this is called an augmenting path)

To do so, we want all graphs (E + e)− f1, (E + e)− f1 + f ′1 − f2, . . . to
be acyclic.

Caveat
The graph changes as we add/remove edges.
We do not want to backtrack over the new graphs formed, so we’d
like to check for cycles in E + f ′i alone.
But it is possible that the unique cycle C(E + f ′i) involves a
previously removed fj , j < i . Cannot remove an edge twice!

How to solve? Just enforce the last condition: we only add edges
whose cycles do not involve previously removed edges.

SWERC Judges Solution Outlines SWERC 2011 12 / 50

B - Coin collecting - Solution: good old BFS

Build a directed graph G′(E) with vertices labeled +e or −f (for
e, f ∈ E)

Put an edge from +e to −f for all f ∈ C(E + e).
Put an edge from −f to +f ′ (the companion edge).
Sources: the two new edges.
Sinks: all edges with out-degree 0.
Look for a path from a source to a sink.

If in our path, C(E + f ′i) involved a previously removed fj , there would
be a shortcut. But if the path is shortest, there can be no shortcuts!
DFS won’t work.

SWERC Judges Solution Outlines SWERC 2011 13 / 50

B - Coin collecting - Solution: good old BFS

Build a directed graph G′(E) with vertices labeled +e or −f (for
e, f ∈ E)
Put an edge from +e to −f for all f ∈ C(E + e).
Put an edge from −f to +f ′ (the companion edge).

Sources: the two new edges.
Sinks: all edges with out-degree 0.
Look for a path from a source to a sink.

If in our path, C(E + f ′i) involved a previously removed fj , there would
be a shortcut. But if the path is shortest, there can be no shortcuts!
DFS won’t work.

SWERC Judges Solution Outlines SWERC 2011 13 / 50

B - Coin collecting - Solution: good old BFS

Build a directed graph G′(E) with vertices labeled +e or −f (for
e, f ∈ E)
Put an edge from +e to −f for all f ∈ C(E + e).
Put an edge from −f to +f ′ (the companion edge).
Sources: the two new edges.
Sinks: all edges with out-degree 0.
Look for a path from a source to a sink.

If in our path, C(E + f ′i) involved a previously removed fj , there would
be a shortcut. But if the path is shortest, there can be no shortcuts!
DFS won’t work.

SWERC Judges Solution Outlines SWERC 2011 13 / 50

B - Coin collecting - Solution: good old BFS

Build a directed graph G′(E) with vertices labeled +e or −f (for
e, f ∈ E)
Put an edge from +e to −f for all f ∈ C(E + e).
Put an edge from −f to +f ′ (the companion edge).
Sources: the two new edges.
Sinks: all edges with out-degree 0.
Look for a path from a source to a sink.

If in our path, C(E + f ′i) involved a previously removed fj , there would
be a shortcut. But if the path is shortest, there can be no shortcuts!

DFS won’t work.

SWERC Judges Solution Outlines SWERC 2011 13 / 50

B - Coin collecting - Solution: good old BFS

Build a directed graph G′(E) with vertices labeled +e or −f (for
e, f ∈ E)
Put an edge from +e to −f for all f ∈ C(E + e).
Put an edge from −f to +f ′ (the companion edge).
Sources: the two new edges.
Sinks: all edges with out-degree 0.
Look for a path from a source to a sink.

If in our path, C(E + f ′i) involved a previously removed fj , there would
be a shortcut. But if the path is shortest, there can be no shortcuts!
DFS won’t work.

SWERC Judges Solution Outlines SWERC 2011 13 / 50

B - Coin collecting - Final remarks

It can be proven that if E is not optimal, there is an augmenting
path.
The algorithm just described can be easily implemented in O(n3).
Time limits not tight.
The algorithm resembles matching algorithms, and in fact both are
a special case of Edmond’s matroid intersection (or matroid
partitioning) algorithm.

SWERC Judges Solution Outlines SWERC 2011 14 / 50

C - Donuts Scene Investigation

Underlying problem

n fixed points in the plane (p1, . . . ,pn).
q query points.
For each of the q query points, return the closest (in Manhattan
distance) of the n fixed points.

Categories: Data structures, geometry
Difficulty: Hard

SWERC Judges Solution Outlines SWERC 2011 15 / 50

C - Donuts Scene Investigation - First observations
We preprocess the n fixed points to create a data structure that can
answer quickly each of the queries.

We will first assume that all of the query points are at the right of all the
n fixed points:

Let the query point be (x , y). The answer will be

min
i

(
x − pi

x +
∣∣∣y − pi

y

∣∣∣)
This can be written as

min

(
min
y≥pi

y

(
x − pi

x + y − pi
y

)
, min

y≤pi
y

(
x − pi

x + pi
y − y

))

It suffices then to compute the point above (x , y) minimizing
−pi

x + pi
y , and the point below (x , y) minimizing −pi

x − pi
y

SWERC Judges Solution Outlines SWERC 2011 16 / 50

C - Donuts Scene Investigation - First observations
We preprocess the n fixed points to create a data structure that can
answer quickly each of the queries.
We will first assume that all of the query points are at the right of all the
n fixed points:

Let the query point be (x , y). The answer will be

min
i

(
x − pi

x +
∣∣∣y − pi

y

∣∣∣)
This can be written as

min

(
min
y≥pi

y

(
x − pi

x + y − pi
y

)
, min

y≤pi
y

(
x − pi

x + pi
y − y

))

It suffices then to compute the point above (x , y) minimizing
−pi

x + pi
y , and the point below (x , y) minimizing −pi

x − pi
y

SWERC Judges Solution Outlines SWERC 2011 16 / 50

C - Donuts Scene Investigation - First observations
We preprocess the n fixed points to create a data structure that can
answer quickly each of the queries.
We will first assume that all of the query points are at the right of all the
n fixed points:

Let the query point be (x , y). The answer will be

min
i

(
x − pi

x +
∣∣∣y − pi

y

∣∣∣)
This can be written as

min

(
min
y≥pi

y

(
x − pi

x + y − pi
y

)
, min

y≤pi
y

(
x − pi

x + pi
y − y

))

It suffices then to compute the point above (x , y) minimizing
−pi

x + pi
y , and the point below (x , y) minimizing −pi

x − pi
y

SWERC Judges Solution Outlines SWERC 2011 16 / 50

C - Donuts Scene Investigation - Solution for simpler
case
This suggests how to create a data structure that solves this simpler
case:

Sort the pi by the y coordinate.

Keep a table that for each of the pi holds the minimum of −pi
x + pi

y
for points above it, and a another one that holds the minimum of
−pi

x − pi
y for points below it. These tables can be computed with

two linear passes over the input once it is sorted by the y
coordinate.
To answer a query, perform a binary search to find the first of the
pi above (x , y), and the first of the pi below (x , y), and use the
appropriate entries of the tables to compute the answer.

This can also be used in the case in which the query point is
guaranteed to be at the left of all the pi , but using instead the values of
pi

x + pi
y and pi

x − pi
y to create our tables.

SWERC Judges Solution Outlines SWERC 2011 17 / 50

C - Donuts Scene Investigation - Solution for simpler
case
This suggests how to create a data structure that solves this simpler
case:

Sort the pi by the y coordinate.
Keep a table that for each of the pi holds the minimum of −pi

x + pi
y

for points above it, and a another one that holds the minimum of
−pi

x − pi
y for points below it. These tables can be computed with

two linear passes over the input once it is sorted by the y
coordinate.

To answer a query, perform a binary search to find the first of the
pi above (x , y), and the first of the pi below (x , y), and use the
appropriate entries of the tables to compute the answer.

This can also be used in the case in which the query point is
guaranteed to be at the left of all the pi , but using instead the values of
pi

x + pi
y and pi

x − pi
y to create our tables.

SWERC Judges Solution Outlines SWERC 2011 17 / 50

C - Donuts Scene Investigation - Solution for simpler
case
This suggests how to create a data structure that solves this simpler
case:

Sort the pi by the y coordinate.
Keep a table that for each of the pi holds the minimum of −pi

x + pi
y

for points above it, and a another one that holds the minimum of
−pi

x − pi
y for points below it. These tables can be computed with

two linear passes over the input once it is sorted by the y
coordinate.
To answer a query, perform a binary search to find the first of the
pi above (x , y), and the first of the pi below (x , y), and use the
appropriate entries of the tables to compute the answer.

This can also be used in the case in which the query point is
guaranteed to be at the left of all the pi , but using instead the values of
pi

x + pi
y and pi

x − pi
y to create our tables.

SWERC Judges Solution Outlines SWERC 2011 17 / 50

C - Donuts Scene Investigation - Solution for simpler
case
This suggests how to create a data structure that solves this simpler
case:

Sort the pi by the y coordinate.
Keep a table that for each of the pi holds the minimum of −pi

x + pi
y

for points above it, and a another one that holds the minimum of
−pi

x − pi
y for points below it. These tables can be computed with

two linear passes over the input once it is sorted by the y
coordinate.
To answer a query, perform a binary search to find the first of the
pi above (x , y), and the first of the pi below (x , y), and use the
appropriate entries of the tables to compute the answer.

This can also be used in the case in which the query point is
guaranteed to be at the left of all the pi , but using instead the values of
pi

x + pi
y and pi

x − pi
y to create our tables.

SWERC Judges Solution Outlines SWERC 2011 17 / 50

C - Donuts Scene Investigation - General solution

To solve the general problem, we decompose each query into a series
of queries falling in the simpler case:

Create a range tree for the pi according to the x coordinate.

For each of the nodes of the tree, sort the corresponding points by
their y coordinate, and compute the tables described in the
solution for the simpler case.
To answer a query, use the range tree to divide the pi into O(log n)
groups, each of them completely at the left of (x , y), or completely
at the right of (x , y).
For each of the groups, use the tables for the corresponding node,
and our solution for the simpler case, to determine the closest
point in Manhattan distance.
Take the best answer over all the groups.

We can also look at this as an augmented 2D range tree.

SWERC Judges Solution Outlines SWERC 2011 18 / 50

C - Donuts Scene Investigation - General solution

To solve the general problem, we decompose each query into a series
of queries falling in the simpler case:

Create a range tree for the pi according to the x coordinate.
For each of the nodes of the tree, sort the corresponding points by
their y coordinate, and compute the tables described in the
solution for the simpler case.

To answer a query, use the range tree to divide the pi into O(log n)
groups, each of them completely at the left of (x , y), or completely
at the right of (x , y).
For each of the groups, use the tables for the corresponding node,
and our solution for the simpler case, to determine the closest
point in Manhattan distance.
Take the best answer over all the groups.

We can also look at this as an augmented 2D range tree.

SWERC Judges Solution Outlines SWERC 2011 18 / 50

C - Donuts Scene Investigation - General solution

To solve the general problem, we decompose each query into a series
of queries falling in the simpler case:

Create a range tree for the pi according to the x coordinate.
For each of the nodes of the tree, sort the corresponding points by
their y coordinate, and compute the tables described in the
solution for the simpler case.
To answer a query, use the range tree to divide the pi into O(log n)
groups, each of them completely at the left of (x , y), or completely
at the right of (x , y).

For each of the groups, use the tables for the corresponding node,
and our solution for the simpler case, to determine the closest
point in Manhattan distance.
Take the best answer over all the groups.

We can also look at this as an augmented 2D range tree.

SWERC Judges Solution Outlines SWERC 2011 18 / 50

C - Donuts Scene Investigation - General solution

To solve the general problem, we decompose each query into a series
of queries falling in the simpler case:

Create a range tree for the pi according to the x coordinate.
For each of the nodes of the tree, sort the corresponding points by
their y coordinate, and compute the tables described in the
solution for the simpler case.
To answer a query, use the range tree to divide the pi into O(log n)
groups, each of them completely at the left of (x , y), or completely
at the right of (x , y).
For each of the groups, use the tables for the corresponding node,
and our solution for the simpler case, to determine the closest
point in Manhattan distance.

Take the best answer over all the groups.

We can also look at this as an augmented 2D range tree.

SWERC Judges Solution Outlines SWERC 2011 18 / 50

C - Donuts Scene Investigation - General solution

To solve the general problem, we decompose each query into a series
of queries falling in the simpler case:

Create a range tree for the pi according to the x coordinate.
For each of the nodes of the tree, sort the corresponding points by
their y coordinate, and compute the tables described in the
solution for the simpler case.
To answer a query, use the range tree to divide the pi into O(log n)
groups, each of them completely at the left of (x , y), or completely
at the right of (x , y).
For each of the groups, use the tables for the corresponding node,
and our solution for the simpler case, to determine the closest
point in Manhattan distance.
Take the best answer over all the groups.

We can also look at this as an augmented 2D range tree.

SWERC Judges Solution Outlines SWERC 2011 18 / 50

C - Donuts Scene Investigation - Complexity

Building the range tree for the x coordinate takes O(n log n) time.

As each point appears in O(log n) nodes, sorting the points in
each node by y coordinate takes O(n log n2) time(or O(n log n)
using a linear-time merge algorithm).
Computing the tables for each of the nodes takes time linear in the
number of points in the node. As each point appears in O(log n)
nodes, the total time for computing the tables is O(n log n).
Answering a query involves solving O(log n) problems for the
simpler case, each of which takes the cost of a binary search,
O(log n).
Total cost: O(n log n + q log n2)

SWERC Judges Solution Outlines SWERC 2011 19 / 50

C - Donuts Scene Investigation - Complexity

Building the range tree for the x coordinate takes O(n log n) time.
As each point appears in O(log n) nodes, sorting the points in
each node by y coordinate takes O(n log n2) time(or O(n log n)
using a linear-time merge algorithm).

Computing the tables for each of the nodes takes time linear in the
number of points in the node. As each point appears in O(log n)
nodes, the total time for computing the tables is O(n log n).
Answering a query involves solving O(log n) problems for the
simpler case, each of which takes the cost of a binary search,
O(log n).
Total cost: O(n log n + q log n2)

SWERC Judges Solution Outlines SWERC 2011 19 / 50

C - Donuts Scene Investigation - Complexity

Building the range tree for the x coordinate takes O(n log n) time.
As each point appears in O(log n) nodes, sorting the points in
each node by y coordinate takes O(n log n2) time(or O(n log n)
using a linear-time merge algorithm).
Computing the tables for each of the nodes takes time linear in the
number of points in the node. As each point appears in O(log n)
nodes, the total time for computing the tables is O(n log n).

Answering a query involves solving O(log n) problems for the
simpler case, each of which takes the cost of a binary search,
O(log n).
Total cost: O(n log n + q log n2)

SWERC Judges Solution Outlines SWERC 2011 19 / 50

C - Donuts Scene Investigation - Complexity

Building the range tree for the x coordinate takes O(n log n) time.
As each point appears in O(log n) nodes, sorting the points in
each node by y coordinate takes O(n log n2) time(or O(n log n)
using a linear-time merge algorithm).
Computing the tables for each of the nodes takes time linear in the
number of points in the node. As each point appears in O(log n)
nodes, the total time for computing the tables is O(n log n).
Answering a query involves solving O(log n) problems for the
simpler case, each of which takes the cost of a binary search,
O(log n).

Total cost: O(n log n + q log n2)

SWERC Judges Solution Outlines SWERC 2011 19 / 50

C - Donuts Scene Investigation - Complexity

Building the range tree for the x coordinate takes O(n log n) time.
As each point appears in O(log n) nodes, sorting the points in
each node by y coordinate takes O(n log n2) time(or O(n log n)
using a linear-time merge algorithm).
Computing the tables for each of the nodes takes time linear in the
number of points in the node. As each point appears in O(log n)
nodes, the total time for computing the tables is O(n log n).
Answering a query involves solving O(log n) problems for the
simpler case, each of which takes the cost of a binary search,
O(log n).
Total cost: O(n log n + q log n2)

SWERC Judges Solution Outlines SWERC 2011 19 / 50

C - Donuts Scene Investigation - Ideas for alternative
efficient approaches

Rotate all of the input by 45 degrees. Put the n given points in a
2D range tree. This is a binary tree sorted by the x coordinate:
each leave corresponds to a point and each internal node to an
interval of consecutive points. At each internal node, store the list
of points in the interval, this time sorted by their y coordinate. This
allows to determine if a rectangle has non-empty intersection with
the points in O((log n)2) time. Then, for each of the q queries, use
binary search to find the smallest non-empty square with its centre
on the query point. Half of its side length will be the answer.

Build a Voronoi diagram for the Manhattan distance (much
harder).

SWERC Judges Solution Outlines SWERC 2011 20 / 50

C - Donuts Scene Investigation - Ideas for alternative
efficient approaches

Rotate all of the input by 45 degrees. Put the n given points in a
2D range tree. This is a binary tree sorted by the x coordinate:
each leave corresponds to a point and each internal node to an
interval of consecutive points. At each internal node, store the list
of points in the interval, this time sorted by their y coordinate. This
allows to determine if a rectangle has non-empty intersection with
the points in O((log n)2) time. Then, for each of the q queries, use
binary search to find the smallest non-empty square with its centre
on the query point. Half of its side length will be the answer.
Build a Voronoi diagram for the Manhattan distance (much
harder).

SWERC Judges Solution Outlines SWERC 2011 20 / 50

C - Donuts Scene Investigation - Other notes on
complexity

It is possible to improve on the described solution by linking the
tables for different nodes of the tree so that we only have to
perform a binary search in one of them, and successive solutions
of the subproblems take only constant time. This is known in the
data structures literature as "fractional cascading", and it brings
the time cost down to O(n log n + q log n)

It is possible to build cases (e.g. a diamond, with the query point
in the centre, and the n points at the border) where a
pruning-based solution will have to inspect almost all points, and
therefore won’t be efficient.

SWERC Judges Solution Outlines SWERC 2011 21 / 50

C - Donuts Scene Investigation - Other notes on
complexity

It is possible to improve on the described solution by linking the
tables for different nodes of the tree so that we only have to
perform a binary search in one of them, and successive solutions
of the subproblems take only constant time. This is known in the
data structures literature as "fractional cascading", and it brings
the time cost down to O(n log n + q log n)

It is possible to build cases (e.g. a diamond, with the query point
in the centre, and the n points at the border) where a
pruning-based solution will have to inspect almost all points, and
therefore won’t be efficient.

SWERC Judges Solution Outlines SWERC 2011 21 / 50

D - Distributing Ballot Boxes

Statement
Distribute boxes among cities:

At least one in every city.
Minimize the box most people are assigned to.

Difficulty: easy/medium.

Remark: At every city people must be distributed proportionally in an
optimal assignment.

SWERC Judges Solution Outlines SWERC 2011 22 / 50

D - Distributing Ballot Boxes

First approach - Give to the most needed
Give 1 box to each city.
For each of the remaining boxes:

1 Find the city which needs it the most
(O(N) = TLE , O(log(N)) = AC with a priority queue).

2 Give the box to that city.

Complexity: O(N + B log N)

SWERC Judges Solution Outlines SWERC 2011 23 / 50

D - Distributing Ballot Boxes

Second approach - Binary search for the answer
Take M = maximum number of people assigned to vote in one
box.
How many ballot boxes will we need? Computation in O(N).
If less than M, try larger M.
If more than M, try smaller M.

Using Binary search we get the solution in O(Nlog(B)).

SWERC Judges Solution Outlines SWERC 2011 24 / 50

E - Game, Set and Match

Statement
Compute the probability of winning a given game, a given set and a
given match if each point is won with probability p.

Categories: probability, dynamic programming
Difficulty: medium

SWERC Judges Solution Outlines SWERC 2011 25 / 50

E - Game, Set and Match - Rule simplification

The rules are actually very simple:

To win a game, you need to win ≥ 4 points by a margin of 2.
To win a set, you need to win ≥ 6 games by a margin of 2, except
if the score reaches 6− 6 (tiebreak).
To win the tiebreak, you need to win ≥ 7 points by a margin of 2.
To win the match, you need to win ≥ 2 sets.

Common subproblem
Compute a(p1), the probability of being the first to win two consecutive
“points”, when tied (if each “point” is won with probability p1). Compute
b(n,p1,p2), the probability of winning n “points” by a margin of 2 if:

each “point” is won with probability p1

when the score is n − n, the probability of eventualy winning is p2.

SWERC Judges Solution Outlines SWERC 2011 26 / 50

E - Game, Set and Match - What needs to be done

Common subproblem
Compute a(p1), the probability of being the first to win two consecutive
“points”, when tied (if each “point” is won with probability p1). Compute
b(n,p1,p2), the probability of winning n “points” by a margin of 2 if:

each “point” is won with probability p1

when the score is n − n, the probability of eventualy winning is p2.

Then
Pr[win game] = b(4,p,a(p)).
Pr[win tiebreak] = b(7,p,a(p)).
Pr[win set] = b(6,Pr[win game],Pr[win tiebreak]).
Pr[win match] = r2 + 2r(1− r), where r = Pr[win set].

SWERC Judges Solution Outlines SWERC 2011 27 / 50

E - Game, Set and Match - Winning probability at
deuce

Let q = a(p).
Recall that each point is won with probability p.
With probability p2, we win directly.
With probability 2p(1− p), we go back to deuce.
So q must satisfy q = p2 + p(1− p)q, i.e.

q =
p2

1− 2p(1− p)
.

A sufficiently accurate simulation would also work here.

SWERC Judges Solution Outlines SWERC 2011 28 / 50

E - Game, Set and Match - Computing b(n,p1,p2) by
DP

Let f (i , j) = probability of winning at score i − j . Base cases:
f (i , j) = 1 if i ≥ n and i ≥ j + 2.
f (i , j) = 0 if j ≥ n and j ≥ i + 2.
f (n,n) = p2.
f (n,n − 1) = p1 + (1− p1) · f (n,n).
f (n − 1,n) = p1 · f (n,n).

Remaining cases:

f (i , j) = p1 · f (i + 1, j) + (1− p1) · f (i , j + 1).

Fill a table f [][] in a top-down fashion using these equations.
The answer is f (0,0).

SWERC Judges Solution Outlines SWERC 2011 29 / 50

Another approach (ENS Ulm 3)

pj = pow(p,4) + 4*pow(p,4)*(1-p) + 10*pow(p,4)*
pow(1-p,2) + 20*pow(p,5)* pow(1-p,3)/(2*p*p-2*p+1);

pt = pow(p,7) + 7*pow(p,7)*pow(1-p,1) +
28*pow(p,7)*pow(1-p,2) + 84*pow(p,7)*pow(1-p,3) +
210*pow(p,7)*pow(1-p,4) +462*pow(p,7)*pow(1-p,5) +
924*pow(p,8)*pow(1-p,6)/(2*p*p-2*p+1);

ps = pow(pj,6) + 6*pow(pj,6)*pow(1-pj,1) +
21*pow(pj,6)*pow(1-pj,2) +
56*pow(pj,6)*pow(1-pj,3) +
126*pow(pj,6)*pow(1-pj,4) +
252*pow(pj,5)*pow(1-pj,5)*(pj*pj+2*pj*(1-pj)*pt);

pm = ps*ps + 2*ps*ps*(1-ps);

SWERC Judges Solution Outlines SWERC 2011 30 / 50

F - Guess the Numbers

Classification
Difficulty: Easy
Method: Backtracking

Task
Given an arithmetic expression e with unknowns x1 . . . xn and some
values v1 . . . vn, compute if there is an assignment of the values to the
unknowns so that the expression evaluates to a specific result.

SWERC Judges Solution Outlines SWERC 2011 31 / 50

F - Guess the Numbers

Steps
1 Parse the expression. Very simple syntax:

e ::= “unknown′′ (lowercase letter)
| (e1+e2)
| (e1−e2)
| (e1∗e2)

2 Try all the possible assignments.
n values for n unknowns⇒ n! posibilites, corresponding to the n!
permutations of the values.

SWERC Judges Solution Outlines SWERC 2011 32 / 50

F - Guess the Numbers

Solution
e = Parse the expression
For each possible permutation v of the values
r = Evaluate(e,v)
If r == result then print "YES"

If result not found then print "NO"

Cost O(n · n!) (this problem is tractable because 1 ≤ n ≤ 5 is very
small)

SWERC Judges Solution Outlines SWERC 2011 33 / 50

G - Non-negative Partial Sums

Statement:
You are given a sequence of n integers.
How many cyclic shifts of the sequence have the property that all
partial sums are non-negative?

Categories: greedy Difficulty: medium

SWERC Judges Solution Outlines SWERC 2011 34 / 50

G - Non-negative Partial Sums - Idea

Precalculate arrays which allow to evaluate in constant time if
some cyclic shift produces only non-negative partial sums.
We define a start position as the position which becomes the first
position in the array after a cyclic shift.
Define A[i] =

∑i
j=1 a[j] and B[i] =

∑n
j=i a[j]

Define C[i] = min(A[1],A[2], . . . ,A[i]).
Define D[i] = min(a[i],a[i] + a[i + 1], . . . ,a[i] + a[i + 1] + . . .+ a[n]).
Position i is a valid start position if D[i] ≥ 0 and B[i] + C[i − 1] ≥ 0
(if i = 1 we only need to check if D[1] ≥ 0).
Loop over all n positions and check this condition.

SWERC Judges Solution Outlines SWERC 2011 35 / 50

G - Non-negative Partial Sums - Details

Arrays A,B,C and D can be calculated in O(n) using an
equivalent recursive definition.
Let A[0] = 0. Then A[i] = A[i − 1] + a[i] for 0 < i ≤ n.
Let B[n + 1] = 0. Then B[i] = B[i + 1] + a[i] for 1 ≤ i ≤ n.
Let C[0] =∞. Then C[i] = min(A[i],C[i − 1]) for 0 < i ≤ n.
Let D[n + 1] =∞. Then D[i] = min(a[i],a[i] + D[i + 1]).

SWERC Judges Solution Outlines SWERC 2011 36 / 50

H - Peer Review

Statement
Each paper should be reviewed by K scientists.
Scientists should not review papers written by people they
collaborate with (including themselves), or review the same paper
more than once.
If a paper is being reviewed too much, too little, or by the wrong
people - tell the organizers.

Categories: graphs
Difficulty: easy

SWERC Judges Solution Outlines SWERC 2011 37 / 50

H - Peer Review
Sample input (illustrated):

too few

too few

too many, dupes, inst

Output for sample input:
NO PROBLEMS FOUND (left)
3 PROBLEMS FOUND (right)

SWERC Judges Solution Outlines SWERC 2011 38 / 50

H - Peer Review - Idea

Go from author-centric (author→ list of reviews)
to paper-centric (paper→ list of reviewers) ...
... and check for rule violations.

The i th paper is not being reviewed correctly if it is being...
1 reviewed too much or too litle ≡ number of reviewers for i 6= K
2 reviewed by the wrong people: if r1 . . . rk are reviewers for i ,

1 same reviewer twice ≡ ∃ u 6= v with ru = rv
2 author or colleague as reviewer ≡ ∃ j with inst(rj) = inst(i)

SWERC Judges Solution Outlines SWERC 2011 39 / 50

H - Peer Review - Idea

Go from author-centric (author→ list of reviews)
to paper-centric (paper→ list of reviewers) ...
... and check for rule violations.

The i th paper is not being reviewed correctly if it is being...
1 reviewed too much or too litle ≡ number of reviewers for i 6= K
2 reviewed by the wrong people: if r1 . . . rk are reviewers for i ,

1 same reviewer twice ≡ ∃ u 6= v with ru = rv
2 author or colleague as reviewer ≡ ∃ j with inst(rj) = inst(i)

SWERC Judges Solution Outlines SWERC 2011 39 / 50

H - Peer Review - Rules to check

If revs is a vector with all the reviewers for paper p, and inst
contains the institutions for each author,

bool good(int p, vector<int> revs, vector<int> inst) {
/ / check r u l e 1
if (revs.size() != k) return false;

/ / check ru l es 2.1 and 2.2
sort(revs, revs.begin(), revs.end());
for (int i=(int)revs.size()-1; i>=0; i--) {

if (i>0 && revs[i] == revs[i-1]) return false;
if (inst[revs[i]] == inst[p]) return false;

}
return true;

}

SWERC Judges Solution Outlines SWERC 2011 40 / 50

H - Peer Review - Complexity

The input itself is O(N · K), and it can be read in linear time, since
a hash-map allows institution names to be looked up in O(1).
Processing of each paper can be done in time O(K · log(K)) - due
to sorting. Without sorting, O(K 2) time would be required to check
for duplicate reviewers.
K was limited to small values, so both strategies were accepted
by the judge.

SWERC Judges Solution Outlines SWERC 2011 41 / 50

H - Peer Review - Trivia

A very simple algorithm to assign good reviews, if there are many small
institutions and authors from different institutions do not collaborate:

shuffle all authors individually
shuffle all institutions (keeping author order)
let j be the number of authors in the largest institution
author i is asked to review papers i + (j · 1) . . . i + (j · k) mod N

I am currently using it to assign peer reviews for my students!

SWERC Judges Solution Outlines SWERC 2011 42 / 50

I - Regular Convex Polygon

Statement
Find a regular convex polygon with as few vertices as possible
that has the given three points as vertices
It is assured that there exists always a solution involving a regular
convex polygon with at most 1000 vertices

Categories: geometry
Difficulty: medium

SWERC Judges Solution Outlines SWERC 2011 43 / 50

I - Regular Convex Polygon
Sample input (illustrated):

SWERC Judges Solution Outlines SWERC 2011 44 / 50

I - Regular Convex Polygon - Idea

Calculate the circumcircle of the three given points. This is also the
circumcircle of all points of the regular convex polygon we look for!

The vertices of the regular convex polygon should evenly divide the
circle into n segments.

Brute force over the number of points the polygon has. For a certain
number of points n, check if the given three points divide the circle into
segments of a size which is a multiple of the segment size for n points.

SWERC Judges Solution Outlines SWERC 2011 45 / 50

I - Regular Convex Polygon - Idea

Calculate the circumcircle of the three given points. This is also the
circumcircle of all points of the regular convex polygon we look for!

The vertices of the regular convex polygon should evenly divide the
circle into n segments.

Brute force over the number of points the polygon has. For a certain
number of points n, check if the given three points divide the circle into
segments of a size which is a multiple of the segment size for n points.

SWERC Judges Solution Outlines SWERC 2011 45 / 50

I - Regular Convex Polygon - Idea

Calculate the circumcircle of the three given points. This is also the
circumcircle of all points of the regular convex polygon we look for!

The vertices of the regular convex polygon should evenly divide the
circle into n segments.

Brute force over the number of points the polygon has. For a certain
number of points n, check if the given three points divide the circle into
segments of a size which is a multiple of the segment size for n points.

SWERC Judges Solution Outlines SWERC 2011 45 / 50

I - Regular Convex Polygon - Example

SWERC Judges Solution Outlines SWERC 2011 46 / 50

I - Regular Convex Polygon - Even simpler

Compute the angles of the triangle, α,β,γ.

Exercise: They should be integer multiples of πn .

SWERC Judges Solution Outlines SWERC 2011 47 / 50

J - Remoteland

Statement
What is the largest possible divisor of n! which is a square?

Categories: greedy, number theory
Difficulty: easy, medium

SWERC Judges Solution Outlines SWERC 2011 48 / 50

J - Remoteland

Precalculate all primes which are less than the maximum allowed
n using Erathostenes’ Sieve.
For all primes pi less or equal than n, compute the exponent αi of
pi in the prime decomposition of n! using the formula:

αi =

⌊
n
pi

⌋
+

⌊
n
p2

i

⌋
+

⌊
n
p3

i

⌋
+ . . .

If the parity is even, we do nothing. The exponent of pi should be
αi .
If the parity is odd, the exponent should be αi − 1 (equivalent as
not taking pi from the set).
All exponentiations calculated using fast (logarithmic)
exponentiation.
Careful about fast I/O!

SWERC Judges Solution Outlines SWERC 2011 49 / 50

The full SWERC 2011 statistics
Correct/Submissions Rate

Problem Correct Submissions Rate
A - Alphabet Soup 0 0 -
B - Coin Collecting 0 0 -
C - Cybercrime Donut Investigation 2 133 1.5%
D - Distributing Ballot Boxes 24 98 24%
E - Game, Set and Match 12 17 71%
F - Guess the Numbers 19 38 50%
G - Non-negative Partial Sums 18 70 30%
H - Peer Review 30 127 24%
I - Regular Convex Polygon 9 64 14%
J - Remoteland 11 38 29%

SWERC Judges Solution Outlines SWERC 2011 50 / 50

