
Solution Outlines

SWERC Judges

SWERC 2010

SWERC Judges Solution Outlines SWERC 2010 1 / 39

Statistics

Problem 1st team solving Time
A - Lawnmower Dirt Collector 15
B - Periodic points
C - Comparing answers Stack of Shorts 71
D - Fake scoreboard Dirt Collector 256
E - Palindromic DNA UPC-2 256
F - Jumping monkey Dirt Collector 112
G - Sensor network
H - Assembly line Techies 131
I - Locks and keys UMU Null 172
J - 3-sided dice Techies 76

SWERC Judges Solution Outlines SWERC 2010 2 / 39

Statistics

Problem AC Total Success Rate
A - Lawnmower 35 69 51%
B - Periodic points 0 6 0%
C - Comparing answers 6 122 5%
D - Fake scoreboard 1 26 4%
E - Palindromic DNA 1 5 20%
F - Jumping monkey 6 64 10%
G - Sensor network 0 10 0%
H - Assembly line 3 35 9%
I - Locks and keys 2 19 11%
J - 3-sided dice 3 106 3%

SWERC Judges Solution Outlines SWERC 2010 3 / 39

Lawnmower
Solution

A: Lawnmower

Testcase OK iff X-passes OK && Y-passes OK

X-pass Y-pass

Idea original: Manuel Abellanas
Enunciado: Manuel Freire

SWERC Judges Solution Outlines SWERC 2010 4 / 39

Lawnmower
Solution

X-Pass OK iff
 Touches start-bound

smallest pass starts at <= w/2
 Touches end-bound

biggest pass starts at >= Y_END - w/2
 No 'gaps' between passes

distance <= w between adjacent passes

(Same for Y-Pass)

SWERC Judges Solution Outlines SWERC 2010 5 / 39

Lawnmower
Solution

X-Pass OK iff
 Touches start-bound

smallest pass starts at <= w/2
 Touches end-bound

biggest pass starts at >= Y_END - w/2
 No 'gaps' between passes

distance <= w between adjacent passes

so, SORT THOSE PASSES

SWERC Judges Solution Outlines SWERC 2010 6 / 39

Lawnmower
Solution

X-Pass OK iff
 Touches start-bound

smallest pass starts at <= w/2
 Touches end-bound

biggest pass starts at >= Y_END - w/2
 No 'gaps' between passes

distance <= w between adjacent passes

so, SORT THOSE PASSES

SWERC Judges Solution Outlines SWERC 2010 7 / 39

Periodic Points
Solution

Categories: Math + DP

Problem
Number of solutions to f n(x) = x in [0,m]⇔ number of intersections
between the graph of f n and the diagonal of the square [0,m]× [0,m].

Difficulty: It is impossible to store a description of f n since data grows
exponentially.

First Remark
f n is also piecewise linear, but the number of pieces may grow
exponentially with n.

SWERC Judges Solution Outlines SWERC 2010 8 / 39

Periodic Points
Solution

Example from the statement
Graph of f , case n = 1.
Number of intersections = 2.

3

2

1

0 1 2 3

SWERC Judges Solution Outlines SWERC 2010 9 / 39

Periodic Points
Solution

Example from the statement
Graph of f , case n = 1.
Number of intersections = 2.

3

2

1

0 1 2 3

SWERC Judges Solution Outlines SWERC 2010 9 / 39

Periodic Points
Solution

Example from the statement

Graph of f 2, case n = 2.
Number of intersections = 6.

3

2

1

0 1 2 3

SWERC Judges Solution Outlines SWERC 2010 9 / 39

Periodic Points
Solution

Example from the statement

Graph of f 2, case n = 2.
Number of intersections = 6.

3

2

1

0 1 2 3

SWERC Judges Solution Outlines SWERC 2010 9 / 39

Periodic Points
Solution

Idea
Graph of f n consists of a union of linked sub-intervals going from y = a
to y = a + 1,a or a− 1.

3

2

1

0 1 2 3

SWERC Judges Solution Outlines SWERC 2010 10 / 39

Periodic Points
Solution

Idea

3

2

1

0 1 2 3
Focus on any unit interval:
Intersections between f n and the diagonal in the interval (k , k + 1) =
sub-intervals going from y = k to y = k + 1 or vice-versa.

SWERC Judges Solution Outlines SWERC 2010 10 / 39

Periodic Points
Solution

Idea

3

2

1

0 1 2 3
Focus on any unit interval:
Intersections between f n and the diagonal in the interval (k , k + 1) =
sub-intervals going from y = k to y = k + 1 or vice-versa.

SWERC Judges Solution Outlines SWERC 2010 10 / 39

Periodic Points
Solution

Shape the idea
Construct m ×m matrix A

Ai,j =

{
0 if f ([i , i + 1]) ⊂ [j , j + 1]

1 otherwise
(1)

(An)i,j = number of subintervals between y = j and y = j + 1
contained in the graph of f n in (i , i + 1)

Result: An
0,0 + An

1,1 + . . .An
m−1,m−1 = trace(An)

Wait a moment! Attention to endpoints of [k , k + 1]

SWERC Judges Solution Outlines SWERC 2010 11 / 39

Periodic Points
Solution

Shape the idea
Construct m ×m matrix A
Ai,j = number of subintervals between y = j and y = j + 1
contained in the graph of f in (i , i + 1)

(An)i,j = number of subintervals between y = j and y = j + 1
contained in the graph of f n in (i , i + 1)

Result: An
0,0 + An

1,1 + . . .An
m−1,m−1 = trace(An)

Wait a moment! Attention to endpoints of [k , k + 1]

SWERC Judges Solution Outlines SWERC 2010 11 / 39

Periodic Points
Solution

Shape the idea
Construct m ×m matrix A
(An)i,j = number of subintervals between y = j and y = j + 1
contained in the graph of f n in (i , i + 1)

Result: An
0,0 + An

1,1 + . . .An
m−1,m−1 = trace(An)

Wait a moment! Attention to endpoints of [k , k + 1]

SWERC Judges Solution Outlines SWERC 2010 11 / 39

Periodic Points
Solution

Shape the idea
Construct m ×m matrix A
(An)i,j = number of subintervals between y = j and y = j + 1
contained in the graph of f n in (i , i + 1)

Result: An
0,0 + An

1,1 + . . .An
m−1,m−1 = trace(An)

Wait a moment! Attention to endpoints of [k , k + 1]

SWERC Judges Solution Outlines SWERC 2010 11 / 39

Periodic Points
Solution

Shape the idea
Construct m ×m matrix A
(An)i,j = number of subintervals between y = j and y = j + 1
contained in the graph of f n in (i , i + 1)

Result: An
0,0 + An

1,1 + . . .An
m−1,m−1 = trace(An)

Wait a moment! Attention to endpoints of [k , k + 1]

SWERC Judges Solution Outlines SWERC 2010 11 / 39

Periodic Points
Solution

Integer coordinate points
Compute if f n(k) = k for any k ∈ {0,1, . . . ,m}.
Complexity: O(m · n) ad-hoc iteration, O(m · log(n)) binary exp.

Algorithm

Compute trace(An) using binary exp (O(m3 · log(n)))
Modify the answer because of integer coordinate points. Tricky!

SWERC Judges Solution Outlines SWERC 2010 12 / 39

Comparing answers
Solution

Categories: Linear Algebra, Randomized algorithms

Transform into matrix multiplication testing
Matrix A. Entry ai,j is the number of roads from location i to
location j .

Matrix B = A2. Entry bi,j is the number of paths of length 2 from
location i to location j .

We are given the entries of a matrix C. We want to check C = B2.

SWERC Judges Solution Outlines SWERC 2010 13 / 39

Comparing answers
Solution

Categories: Linear Algebra, Randomized algorithms

Transform into matrix multiplication testing
Matrix A. Entry ai,j is the number of roads from location i to
location j .
Matrix B = A2. Entry bi,j is the number of paths of length 2 from
location i to location j .

We are given the entries of a matrix C. We want to check C = B2.

SWERC Judges Solution Outlines SWERC 2010 13 / 39

Comparing answers
Solution

Categories: Linear Algebra, Randomized algorithms

Transform into matrix multiplication testing
Matrix A. Entry ai,j is the number of roads from location i to
location j .
Matrix B = A2. Entry bi,j is the number of paths of length 2 from
location i to location j .
We are given the entries of a matrix C. We want to check C = B2.

SWERC Judges Solution Outlines SWERC 2010 13 / 39

Comparing answers
Solution

Important observation

We do not need to compute B2 to check if it is C!!

Witness for non-equality

Let x be a vector. If B2x 6= Cx , we call x a witness for non-equality of
B2 and C. Such a witness always exists whenever B2 6= C (let xi be 1
for the index of a column in which B2 and C differ, and 0 everywhere
else).

SWERC Judges Solution Outlines SWERC 2010 14 / 39

Comparing answers
Solution

Important observation

We do not need to compute B2 to check if it is C!!

Witness for non-equality

Let x be a vector. If B2x 6= Cx , we call x a witness for non-equality of
B2 and C. Such a witness always exists whenever B2 6= C (let xi be 1
for the index of a column in which B2 and C differ, and 0 everywhere
else).

SWERC Judges Solution Outlines SWERC 2010 14 / 39

Comparing answers
Solution

Finding a witness

If B2 6= C, a randomly chosen vector will of elements in {0, . . . , x} be a
witness with probability at least 1− 1/x .
Proof:

B2x 6= Cx ⇐⇒ (B2 − C)x = 0. As B2 − C 6= 0, let h be a row of
B2 − C which has a nonzero element hi . Then, hT x = 0 implies

xi =

∑
j 6=i hjxj

ci
. But xi is a random element in {0, . . . , x}, so that is true

with probability at most
1

x + 1
.

Testing whether a vector is a witness
It involves three multiplications of a matrix by a vector, which takes
time Θ(n2).

SWERC Judges Solution Outlines SWERC 2010 15 / 39

Comparing answers
Solution

Finding a witness

If B2 6= C, a randomly chosen vector will of elements in {0, . . . , x} be a
witness with probability at least 1− 1/x .
Proof:
B2x 6= Cx ⇐⇒ (B2 − C)x = 0. As B2 − C 6= 0, let h be a row of
B2 − C which has a nonzero element hi . Then, hT x = 0 implies

xi =

∑
j 6=i hjxj

ci
. But xi is a random element in {0, . . . , x}, so that is true

with probability at most
1

x + 1
.

Testing whether a vector is a witness
It involves three multiplications of a matrix by a vector, which takes
time Θ(n2).

SWERC Judges Solution Outlines SWERC 2010 15 / 39

Comparing answers
Solution

Final algorithm
Pick a small constant number of random vectors in {0, . . . , x}n, for
x ≥ 2.
Check whether for any of them B2x 6= C.
If that is the case, return B2 6= C("NO"), otherwise return
B2 = C("YES").

SWERC Judges Solution Outlines SWERC 2010 16 / 39

Comparing answers
Solution

References
Freivalds’ Algorithm: Freivalds, R. Information Processing 77,
Proceedings of IFIP Congress 77,

SWERC Judges Solution Outlines SWERC 2010 17 / 39

Fake scoreboard
Solution

Categories: greedy / max flow

Problem
Reconstruct a 0− 1 matrix from its row and column sums ri , cj . Output
lexicographically smallest solution.

Reduction to decision version
Is there a solution?
Given a partialy-filled matrix, can it be extended to a solution?

If each of these can be answered in time T , we have an O(n2T)
algorithm for our task.

SWERC Judges Solution Outlines SWERC 2010 18 / 39

Fake scoreboard
Solution

Categories: greedy / max flow

Problem
Reconstruct a 0− 1 matrix from its row and column sums ri , cj . Output
lexicographically smallest solution.

Reduction to decision version
Is there a solution?
Given a partialy-filled matrix, can it be extended to a solution?

If each of these can be answered in time T , we have an O(n2T)
algorithm for our task.

SWERC Judges Solution Outlines SWERC 2010 18 / 39

Fake scoreboard
First approach (greedy)

Decision algorithm
1 Focus on the topmost row; must have r1 ones.
2 Sort column sums c1, . . . , cn in decreasing order.
3 Put ones in the r1 columns with largest sums.
4 Decrease column sums and proceed with the next row.

Running time: O(n2 log n). Does it work?

Take any solution; suppose ci ≥ cj and the first row looks like 01 on
these columns.
Then some other row below must look like 10; exchanging the two
values in both rows leads to another solution.
Repeat n2 times, trying to place zeroes. Total time: O(n4 log n) AC.
More careful implementation: O(n3 log n).

SWERC Judges Solution Outlines SWERC 2010 19 / 39

Fake scoreboard
First approach (greedy)

Decision algorithm
1 Focus on the topmost row; must have r1 ones.
2 Sort column sums c1, . . . , cn in decreasing order.
3 Put ones in the r1 columns with largest sums.
4 Decrease column sums and proceed with the next row.

Running time: O(n2 log n). Does it work?
Take any solution; suppose ci ≥ cj and the first row looks like 01 on
these columns.
Then some other row below must look like 10; exchanging the two
values in both rows leads to another solution.

Repeat n2 times, trying to place zeroes. Total time: O(n4 log n) AC.
More careful implementation: O(n3 log n).

SWERC Judges Solution Outlines SWERC 2010 19 / 39

Fake scoreboard
First approach (greedy)

Decision algorithm
1 Focus on the topmost row; must have r1 ones.
2 Sort column sums c1, . . . , cn in decreasing order.
3 Put ones in the r1 columns with largest sums.
4 Decrease column sums and proceed with the next row.

Running time: O(n2 log n). Does it work?
Take any solution; suppose ci ≥ cj and the first row looks like 01 on
these columns.
Then some other row below must look like 10; exchanging the two
values in both rows leads to another solution.
Repeat n2 times, trying to place zeroes. Total time: O(n4 log n) AC.
More careful implementation: O(n3 log n).

SWERC Judges Solution Outlines SWERC 2010 19 / 39

Fake scoreboard
Second approach (max flow)

Decision algorithm
Build a graph with:

a source, a sink, n row vertices and n column vertices;
ri units of flow from source to row i ;
edge of capacity one from row i to column j ;
cj units of flow from column j to sink;

∃ solution⇔ max. flow is
∑

ri =
∑

cj .

2n + 2 vertices, n2 + 2n edges.
Unit network⇒ Dinic’s algorithm takes O(E

√
V) = O(n2.5) time.

Repeat n2 times. Overall: Ω(n4.5) TLE.

SWERC Judges Solution Outlines SWERC 2010 20 / 39

Fake scoreboard
Second approach (max flow)

Decision algorithm
Build a graph with:

a source, a sink, n row vertices and n column vertices;
ri units of flow from source to row i ;
edge of capacity one from row i to column j ;
cj units of flow from column j to sink;

∃ solution⇔ max. flow is
∑

ri =
∑

cj .

2n + 2 vertices, n2 + 2n edges.
Unit network⇒ Dinic’s algorithm takes O(E

√
V) = O(n2.5) time.

Repeat n2 times. Overall: Ω(n4.5) TLE.

SWERC Judges Solution Outlines SWERC 2010 20 / 39

Fake scoreboard
Second approach: how to make it faster

Idea: no need to compute max flow from scratch every time.
If current solution does not use edge (i , j), there is a 0 already in
that position.
Otherwise, remove the edge and try to push the missing unit of
flow through another path.
We can write a 0 iff the last step succeeded.

O(n2.5) initial max-flow computation; O(E) = O(n2) additional for each
decision.
Overall: O(n4) AC.
Fastest solution by far! (for input size n ∼ 80)

SWERC Judges Solution Outlines SWERC 2010 21 / 39

Fake scoreboard
Second approach: how to make it faster

Idea: no need to compute max flow from scratch every time.
If current solution does not use edge (i , j), there is a 0 already in
that position.
Otherwise, remove the edge and try to push the missing unit of
flow through another path.
We can write a 0 iff the last step succeeded.

O(n2.5) initial max-flow computation; O(E) = O(n2) additional for each
decision.
Overall: O(n4) AC.
Fastest solution by far! (for input size n ∼ 80)

SWERC Judges Solution Outlines SWERC 2010 21 / 39

Palindromic DNA
Categories: 2SAT

Problem
Transform a given string s ∈ {A,G,C,T}n subject to the following:

1 several given pairs of characters should be equal;
2 for each character s[i], we can increase it, decrease it, or leave it

unmodified (A =⇒ G =⇒ C =⇒ T =⇒ A)
3 cannot modify two consecutive characters

Observations
For each pair of positions that should be equal:

if s[i] = s[j], need to apply same operation to both;
if dist(s[i], s[j]) = 1, exactly one of them has to change (in the
right direction);
if dist(s[i], s[j]) = 2, both need to change in reverse directions.

SWERC Judges Solution Outlines SWERC 2010 22 / 39

Palindromic DNA
Categories: 2SAT

Problem
Transform a given string s ∈ {A,G,C,T}n subject to the following:

1 several given pairs of characters should be equal;
2 for each character s[i], we can increase it, decrease it, or leave it

unmodified (A =⇒ G =⇒ C =⇒ T =⇒ A)
3 cannot modify two consecutive characters

Observations
For each pair of positions that should be equal:

if s[i] = s[j], need to apply same operation to both;
if dist(s[i], s[j]) = 1, exactly one of them has to change (in the
right direction);
if dist(s[i], s[j]) = 2, both need to change in reverse directions.

SWERC Judges Solution Outlines SWERC 2010 22 / 39

Palindromic DNA
First solution

We can write all constraints in terms of two sets of variables xi , yi :
xi = true iff si is changed;
yi = true iff si is increased and false if it is decreased;

Each constraint involves just two variables =⇒ 2SAT problem.
We can write all constraints as sets of implications, e.g. xi =⇒ xj ,
xi =⇒ xi+1 or yi =⇒ yj .
There is no solution iff a contradiction arises, i.e. both xi =⇒ x̄i
AND x̄i =⇒ xi .
Complexity: O(variables + constraints) = O(n · subsets) using
linear-time SCC algo AC.

Naive SCC algo with n DFS’s will time out, but...

SWERC Judges Solution Outlines SWERC 2010 23 / 39

Palindromic DNA
First solution

We can write all constraints in terms of two sets of variables xi , yi :
xi = true iff si is changed;
yi = true iff si is increased and false if it is decreased;

Each constraint involves just two variables =⇒ 2SAT problem.
We can write all constraints as sets of implications, e.g. xi =⇒ xj ,
xi =⇒ xi+1 or yi =⇒ yj .

There is no solution iff a contradiction arises, i.e. both xi =⇒ x̄i
AND x̄i =⇒ xi .
Complexity: O(variables + constraints) = O(n · subsets) using
linear-time SCC algo AC.

Naive SCC algo with n DFS’s will time out, but...

SWERC Judges Solution Outlines SWERC 2010 23 / 39

Palindromic DNA
First solution

We can write all constraints in terms of two sets of variables xi , yi :
xi = true iff si is changed;
yi = true iff si is increased and false if it is decreased;

Each constraint involves just two variables =⇒ 2SAT problem.
We can write all constraints as sets of implications, e.g. xi =⇒ xj ,
xi =⇒ xi+1 or yi =⇒ yj .
There is no solution iff a contradiction arises, i.e. both xi =⇒ x̄i
AND x̄i =⇒ xi .
Complexity: O(variables + constraints) = O(n · subsets) using
linear-time SCC algo AC.

Naive SCC algo with n DFS’s will time out, but...

SWERC Judges Solution Outlines SWERC 2010 23 / 39

Palindromic DNA
First solution

We can write all constraints in terms of two sets of variables xi , yi :
xi = true iff si is changed;
yi = true iff si is increased and false if it is decreased;

Each constraint involves just two variables =⇒ 2SAT problem.
We can write all constraints as sets of implications, e.g. xi =⇒ xj ,
xi =⇒ xi+1 or yi =⇒ yj .
There is no solution iff a contradiction arises, i.e. both xi =⇒ x̄i
AND x̄i =⇒ xi .
Complexity: O(variables + constraints) = O(n · subsets) using
linear-time SCC algo AC.

Naive SCC algo with n DFS’s will time out, but...

SWERC Judges Solution Outlines SWERC 2010 23 / 39

Palindromic DNA
Second solution

We can group together all positions that should have equal
characters.
There remain only O(n) constraints between these clusters (each
saying that two consecutive characters cannot be modified at the
same time).

Try each of four possible assigments to elements in a cluster and
recursively deal with implications to other clusters in a DFS
fashion.
If no contradiction is found, set this assignment and go on to next
cluster (no backtracking).
Equivalent to running naive SCC algo on the “reduced” graph with
E = O(V); runs in O(V E) = O(n2) AC.

SWERC Judges Solution Outlines SWERC 2010 24 / 39

Palindromic DNA
Second solution

We can group together all positions that should have equal
characters.
There remain only O(n) constraints between these clusters (each
saying that two consecutive characters cannot be modified at the
same time).
Try each of four possible assigments to elements in a cluster and
recursively deal with implications to other clusters in a DFS
fashion.
If no contradiction is found, set this assignment and go on to next
cluster (no backtracking).

Equivalent to running naive SCC algo on the “reduced” graph with
E = O(V); runs in O(V E) = O(n2) AC.

SWERC Judges Solution Outlines SWERC 2010 24 / 39

Palindromic DNA
Second solution

We can group together all positions that should have equal
characters.
There remain only O(n) constraints between these clusters (each
saying that two consecutive characters cannot be modified at the
same time).
Try each of four possible assigments to elements in a cluster and
recursively deal with implications to other clusters in a DFS
fashion.
If no contradiction is found, set this assignment and go on to next
cluster (no backtracking).
Equivalent to running naive SCC algo on the “reduced” graph with
E = O(V); runs in O(V E) = O(n2) AC.

SWERC Judges Solution Outlines SWERC 2010 24 / 39

Jumping Monkey
Solution

Categories: Graphs, DP / BFS

Idea
For each possible shooting place, keep track of the possible places
where the monkey can be.

DP / BFS
State = subset of places where the monkey can be
For each possible place where the monkey can be, shoot at it, and
recompute the list of possible places where the monkey can move. For
each state, keep track of the place where the shot was done. Cost:
O(n3 · 2n) (2n possible states, n possible shots, n2 possible
neighbours).
Algorithm terminates if either no new states are found or state 0 is
reached. In the latter case, recompute the path using the list of shots.

SWERC Judges Solution Outlines SWERC 2010 25 / 39

Jumping Monkey
Solution

Categories: Graphs, DP / BFS

Idea
For each possible shooting place, keep track of the possible places
where the monkey can be.

DP / BFS
State = subset of places where the monkey can be

For each possible place where the monkey can be, shoot at it, and
recompute the list of possible places where the monkey can move. For
each state, keep track of the place where the shot was done. Cost:
O(n3 · 2n) (2n possible states, n possible shots, n2 possible
neighbours).
Algorithm terminates if either no new states are found or state 0 is
reached. In the latter case, recompute the path using the list of shots.

SWERC Judges Solution Outlines SWERC 2010 25 / 39

Jumping Monkey
Solution

Categories: Graphs, DP / BFS

Idea
For each possible shooting place, keep track of the possible places
where the monkey can be.

DP / BFS
State = subset of places where the monkey can be
For each possible place where the monkey can be, shoot at it, and
recompute the list of possible places where the monkey can move. For
each state, keep track of the place where the shot was done. Cost:
O(n3 · 2n) (2n possible states, n possible shots, n2 possible
neighbours).

Algorithm terminates if either no new states are found or state 0 is
reached. In the latter case, recompute the path using the list of shots.

SWERC Judges Solution Outlines SWERC 2010 25 / 39

Jumping Monkey
Solution

Categories: Graphs, DP / BFS

Idea
For each possible shooting place, keep track of the possible places
where the monkey can be.

DP / BFS
State = subset of places where the monkey can be
For each possible place where the monkey can be, shoot at it, and
recompute the list of possible places where the monkey can move. For
each state, keep track of the place where the shot was done. Cost:
O(n3 · 2n) (2n possible states, n possible shots, n2 possible
neighbours).
Algorithm terminates if either no new states are found or state 0 is
reached. In the latter case, recompute the path using the list of shots.

SWERC Judges Solution Outlines SWERC 2010 25 / 39

Possible optimizations
Use bitmasks for the set of neighbours. Computation of the next
state is done in O(n2). Total complexity is O(n2 · 2n).

Let the state be {Vi1 ,Vi2 , ...,Vin}. Precompute the OR of the
neighbours of {Vi1 , ...,Vik} and {Vik , ...,Vin}. If you shoot to the
vertex Vik , the next state is the OR of the neighbours
{Vi1 , ...,Vik−1} and {Vik+1 , ...,Vin} and can be done in constant
time. Total cost is O(n · 2n).

SWERC Judges Solution Outlines SWERC 2010 26 / 39

Possible optimizations
Use bitmasks for the set of neighbours. Computation of the next
state is done in O(n2). Total complexity is O(n2 · 2n).
Let the state be {Vi1 ,Vi2 , ...,Vin}. Precompute the OR of the
neighbours of {Vi1 , ...,Vik} and {Vik , ...,Vin}. If you shoot to the
vertex Vik , the next state is the OR of the neighbours
{Vi1 , ...,Vik−1} and {Vik+1 , ...,Vin} and can be done in constant
time. Total cost is O(n · 2n).

SWERC Judges Solution Outlines SWERC 2010 26 / 39

Sensor Network
Solution

Problem
Find minimum λ(A) between all spanning trees of the graph (or
spanning subgraphs).

Inefficient approach
Fix an edge x and take edges with increasing weight until it spans the
whole graph. Total running time worst case Ω(m2)⇒ TLE .

SWERC Judges Solution Outlines SWERC 2010 27 / 39

Sensor Network
Solution

Good Algorithm
1 Sort the edges by increasing weigh.
2 F = set of edges kept (forming a forest). Set F = ∅.
3 For each edge x , add x to F . If ∃ cycle in F , remove lightest edge

in the cycle. If |F | = n− 1, F is a spanning tree; check sol < λ(F).

Total running time: O(n ·m) AC .
There is also a (very hard) O(m log n) solution using link-cut trees of
Sleator and Tarjan (union-find with deletions).

References
Camerini, Maffioli, Martello, Toth: “Most and least uniform
spanning trees”, Discrete Appl. Math. (1986).
Sleator, Tarjan: “A data structure for dynamic trees”. In
Proceedings of STOC (1981).

SWERC Judges Solution Outlines SWERC 2010 28 / 39

Sensor Network
Solution

Categories: Graphs

Data into a graph
Each sensor controls exactly two doors...

Doors⇒ Vertices (n ≤ 300).
Sensors⇒ Edges (m ≤ n(n − 1)/2).
Voltage⇒Weight (ω).

“Neighboring” sensors⇒ Adjacent edges.
Active sensors (admissible subset)⇒ A ⊂ E connected, spans
the graph.
margin⇒ λ(A) = maxx ,y∈A{|ωx − ωy |}.
Minimum margin when A is a tree.

SWERC Judges Solution Outlines SWERC 2010 29 / 39

Sensor Network
Solution

Categories: Graphs

Data into a graph
Each sensor controls exactly two doors...

Doors⇒ Vertices (n ≤ 300).
Sensors⇒ Edges (m ≤ n(n − 1)/2).
Voltage⇒Weight (ω).

“Neighboring” sensors⇒ Adjacent edges.
Active sensors (admissible subset)⇒ A ⊂ E connected, spans
the graph.
margin⇒ λ(A) = maxx ,y∈A{|ωx − ωy |}.
Minimum margin when A is a tree.

SWERC Judges Solution Outlines SWERC 2010 29 / 39

Sensor Network
Solution

Categories: Graphs

Data into a graph
Each sensor controls exactly two doors...

Doors⇒ Vertices (n ≤ 300).
Sensors⇒ Edges (m ≤ n(n − 1)/2).
Voltage⇒Weight (ω).

“Neighboring” sensors⇒ Adjacent edges.
Active sensors (admissible subset)⇒ A ⊂ E connected, spans
the graph.
margin⇒ λ(A) = maxx ,y∈A{|ωx − ωy |}.
Minimum margin when A is a tree.

SWERC Judges Solution Outlines SWERC 2010 29 / 39

Sensor Network
Solution

Problem
Find minimum λ(A) between all spanning trees of the graph (or
spanning subgraphs).

Inefficient approach
Fix an edge x and take edges with increasing weight until it spans the
whole graph. Total running time worst case Ω(m2)⇒ TLE .

SWERC Judges Solution Outlines SWERC 2010 30 / 39

Sensor Network
Solution

Good Algorithm
1 Sort the edges by increasing weigh.
2 F = set of edges kept (forming a forest). Set F = ∅.
3 For each edge x , add x to F . If ∃ cycle in F , remove lightest edge

in the cycle. If |F | = n− 1, F is a spanning tree; check sol < λ(F).

Total running time: O(n ·m) AC .
There is also a (very hard) O(m log n) solution using link-cut trees of
Sleator and Tarjan (union-find with deletions).

References
Camerini, Maffioli, Martello, Toth: “Most and least uniform
spanning trees”, Discrete Appl. Math. (1986).
Sleator, Tarjan: “A data structure for dynamic trees”. In
Proceedings of STOC (1981).

SWERC Judges Solution Outlines SWERC 2010 31 / 39

H - Assembly line
Categories: Dynamic Programming

Idea
cost(i,j,k) is minimum cost to assemble pieces from i to j obtaining a
component of type k .

cost(i , i , k) = 0 if the component at position i is of type k .
cost(i , i , k) = ∞ if the component at position i is not of type k .
cost(i , j , k) = MIN{cost(i ,m,a) + cost(m + 1, j ,b) + Ca,b

| m ∈ [i , j),a,b ∈ types of pieces,Ra,b = k}
where Ca,b is the cost of assembling two pieces of types a and b, and
Ra,b is the type of the resulting component.

Solution
Fill a matrix of length × length × symbols by diagonals.

Cost O(length3.symbols2)

SWERC Judges Solution Outlines SWERC 2010 32 / 39

Locks and keys
Solution

Categories: graphs

Problem
Output a path between two nodes on a tree with restrictions on the
edges that can be traversed.

First step
Compute whether a path is even possible by keeping a set of nodes
that can be visited and a set of available keys. Once a lock is
encountered, check for the key and augment the path if the key is
found. Runtime: O(V + C).
The length of the maximum available path allows to keep track of a
path which goes to and from the root and opens the locks as they are
encountered.

SWERC Judges Solution Outlines SWERC 2010 33 / 39

Locks and keys
Solution

Categories: graphs

Problem
Output a path between two nodes on a tree with restrictions on the
edges that can be traversed.

First step
Compute whether a path is even possible by keeping a set of nodes
that can be visited and a set of available keys. Once a lock is
encountered, check for the key and augment the path if the key is
found. Runtime: O(V + C).

The length of the maximum available path allows to keep track of a
path which goes to and from the root and opens the locks as they are
encountered.

SWERC Judges Solution Outlines SWERC 2010 33 / 39

Locks and keys
Solution

Categories: graphs

Problem
Output a path between two nodes on a tree with restrictions on the
edges that can be traversed.

First step
Compute whether a path is even possible by keeping a set of nodes
that can be visited and a set of available keys. Once a lock is
encountered, check for the key and augment the path if the key is
found. Runtime: O(V + C).
The length of the maximum available path allows to keep track of a
path which goes to and from the root and opens the locks as they are
encountered.

SWERC Judges Solution Outlines SWERC 2010 33 / 39

Speedups
Topological Sort of the colors of the keys(which keys do I need to take
before others?) to avoid taking unnecessary keys.

LCA to compute shortest path on the tree.

SWERC Judges Solution Outlines SWERC 2010 34 / 39

Speedups
Topological Sort of the colors of the keys(which keys do I need to take
before others?) to avoid taking unnecessary keys.
LCA to compute shortest path on the tree.

SWERC Judges Solution Outlines SWERC 2010 34 / 39

3-sided dice
Solution

Categories: Geometry

View the problem geometrically
Key idea: See a die as a point in three dimensions (for each
outcome, a coordinate with the probability of that outcome).

The set of dice for which we answer "YES", is the set of convex
combinations of the given dice with non-zero coefficients for all
points.
The set of valid points is the interior of the triangle determined by
the three points.

SWERC Judges Solution Outlines SWERC 2010 35 / 39

3-sided dice
Solution

Categories: Geometry

View the problem geometrically
Key idea: See a die as a point in three dimensions (for each
outcome, a coordinate with the probability of that outcome).
The set of dice for which we answer "YES", is the set of convex
combinations of the given dice with non-zero coefficients for all
points.
The set of valid points is the interior of the triangle determined by
the three points.

SWERC Judges Solution Outlines SWERC 2010 35 / 39

3-sided dice
Solution

Transform to two dimensions
We want to see whether a point is in a triangle. We know how to
do that in 2D.

Key idea: All the dice in the input, seen as a point in 3 dimensions,
are in the plane x + y + z = 10,000.
We can just project all the input into the z = 0 plane (i.e. drop third
coordinate). Then check if the fourth dice is in the interior of the
triangle in the plane determined by the other ones.

SWERC Judges Solution Outlines SWERC 2010 36 / 39

3-sided dice
Solution

Transform to two dimensions
We want to see whether a point is in a triangle. We know how to
do that in 2D.
Key idea: All the dice in the input, seen as a point in 3 dimensions,
are in the plane x + y + z = 10,000.
We can just project all the input into the z = 0 plane (i.e. drop third
coordinate). Then check if the fourth dice is in the interior of the
triangle in the plane determined by the other ones.

SWERC Judges Solution Outlines SWERC 2010 36 / 39

3-sided dice
Solution

Handle special cases
The triangle could be degenerate (i.e. the three points are in the
same segment)
In that case, we need to check if the fourth dice is in the interior of
the segment.

SWERC Judges Solution Outlines SWERC 2010 37 / 39

3-sided dice
Solution

Final algorithm
Check if the three points are in the same segment.
If they are, check if the point is in the interior of the segment.
Otherwise, check it is in the interior of the triangle.

SWERC Judges Solution Outlines SWERC 2010 38 / 39

3-sided dice
Solution

Alternative solution
See the problem as a linear system of three equations with three
variables.
Handle the case in which the determinant is 0, so the matrix has
rank 1 or 2.

SWERC Judges Solution Outlines SWERC 2010 39 / 39

