
DAPC 2022
Delft Algorithm Programming Contest 2022

Problems
A Abbreviated Aliases
B Bubble-bubble Sort
C Cookbook Composition
D Dimensional Debugging
E Extended Braille
F Fastestest Function
G Guessing Primes
H Heavy Hauling
I Inked Inscriptions
J Jabbing Jets
K Knitting Patterns
L Lots of Liquid

Copyright © 2022 by The BAPC 2022 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Abbreviated Aliases 3

A Abbreviated Aliases Time limit: 2s

CC BY-SA 3.0 by Wikimedia,
modified

You are the owner of a large successful internet site with lots of
users. All these users have chosen an alias of exactly l characters for
logging into the site. Recently, you noticed that you started running
into disk space issues: storing all these aliases takes up a lot of data!

You do not have enough money to buy extra storage, so you are
looking for ways to reduce the storage space needed. A friend gives
you the following compression idea that might help: instead of stor-
ing the full alias for each user, you might get away with only storing
a prefix of that alias, as long as no other alias has the same prefix.
For example, if you just have the aliases james and jacob, you
can store only jam and jac and still be able to identify them both.

This idea sounds quite interesting to you, and you are looking forward to finally having more
space available on your disk again. You would like to find out how much space you need to
store all aliases using this compression technique.

Input

The input consists of:

• One line with two integers n and l (2 ≤ n ≤ 104, 1 ≤ l ≤ 103), the number of aliases
and the length of each alias.

• n lines, each with an alias: a string consisting of exactly l English lowercase characters
(a-z). Each alias is unique.

Output

Output the total number of characters you still need to store if you apply this compression
technique.

Sample Input 1 Sample Output 1
2 5
james
jacob

6

Sample Input 2 Sample Output 2
4 4
xxxx
yxxx
xxyx
yxxy

14

Problem B: Bubble-bubble Sort 4

B Bubble-bubble Sort Time limit: 2s

Image by Tom from Pixabay.

Bubbles! As a fanatical supporter of the Bubbles Are Perfect
Creatures movement, you have accumulated a large collection
of bubbles in all colours and sizes. Being a long time member,
your bubbles are among the best in the world, and now is the
time to show this. Tomorrow, the yearly Bubble Exposition will
be held, and your goal is to win the Bubble Prize and become
the Bubble Champion!

However, this is not an easy competition. In order to win, you
do not only need the most beautiful bubbles, you also need the best-looking placement of
bubbles. You have decided to order the bubbles by bubbliness: less bubblier bubbles to the
left, more bubblier bubbles to the right. However, it is hard to compare all the bubbles in
your collection at once. In fact, you can only compare up to k bubbles by eye before losing
track of all the bubbles. Since your collection consists of more than k bubbles, you need a
fancier sorting algorithm.

Your first thought is to use the best sorting algorithm for bubbly purposes, namely Bubble
Sort. However, this is the most prestigious bubble competition, so you decide to do better:
Bubble-bubble Sort. It works as follows.

Initially, your bubbles are placed in an arbitrary order. Every hour, you do the following: you
look at the first k bubbles and place them in the optimal order. Then, you look at bubbles 2
to k + 1 and place those in the correct order. Then, you look at bubbles 3 to k + 2, and so
on, until you have placed the last k bubbles in the correct order. You then admire how the
bubble collection looks so far until the next hour begins and you start at the first bubbles
again.

Is this algorithm fast enough to place all your bubbles, or do you need to go further and
invent a Bubble-bubble-bubble Sort algorithm? To be precise, after how many hours are the
bubbles in the optimal positions?

Input

The input consists of:

• One line with two integers n and k (2 ≤ k < n ≤ 2500), the number of bubbles and the
number of bubbles you can sort at once.

• One line with n integers a (0 ≤ a ≤ 109), the bubbliness of each bubble in the initial
placement of your bubble collection.

Output

Output the number of hours needed to sort your bubble collection.

Problem B: Bubble-bubble Sort 5

Sample Input 1 Sample Output 1
5 2
3 4 1 5 2

3

Sample Input 2 Sample Output 2
8 3
60 8 27 7 68 41 53 44

2

Sample Input 3 Sample Output 3
6 3
3 2 4 2 3 1

3

Problem C: Cookbook Composition 6

C Cookbook Composition Time limit: 2s

Chef Gordon Oliver in his natural
habitat, multitasking his heart out.

CC BY 2.0 by Jeremy Noble on Flickr

The world-famous chef Gordon Oliver is composing a new
cookbook called “Becoming A Perfect Chef”. He has a list
of recipes that he wants to publish in the cookbook. Each
recipe is in the form of a list of steps, where every step might
depend on some previous steps (meaning a step cannot be
started until all its dependencies have finished), and expected
time per step.

Gordon knows that, as an expert chef, he can multitask and
do as many tasks simultaneously as needed. Meanwhile, a
beginner can do one task at a time, so they need to execute
them sequentially. He would like to order the recipes for the cookbook by accessibility, where
the lowest beginner time

expert time ratio recipes come first.

As an example, consider the first sample case. For the oven dish, an expert chef like Gordon
Oliver can prepare the tomatoes, eggplants, and sauce all at the same time (with the sauce
taking the longest: 5 time), and followed by arranging (1) and baking (30) the dish, this
takes 5 + 1 + 30 = 36 time. On the other hand, a beginner needs 2 + 2 + 5 + 1 + 30 = 40
time to make the oven dish. This makes the accessibility ratio of the oven dish 40/36 ≈ 1.11.
The accessibility ratio of the ice cream is 1 (because beginner and expert chefs both require
5 + 5 + 5 + 240 = 255 time to prepare it), so it comes before the oven dish in the cookbook.

Input

The input consists of:

• One line with an integer n (2 ≤ n ≤ 500), the number of recipes.

• Then, for every recipe:

– One line with the name of the recipe and an integer s (1 ≤ s ≤ 50), the number of
steps in the recipe.

– s lines, one for every step in the recipe, with the step name, an integer t (1 ≤ t ≤
106), the step duration, an integer d (0 ≤ d ≤ 49), the number of dependencies,
followed by a list of step names that this step depends on.
A step only appears once all the steps that it depends on have been listed.

The recipe and step names consist of at most 10 English lowercase letters (a-z).

The recipe names are unique and the step names are unique per recipe.

Output

Output the names of the recipes in the cookbook, ordered by accessibility.

If there are multiple valid solutions, you may output any one of them.

Problem C: Cookbook Composition 7

Sample Input 1
2
ovendish 5
tomatoes 2 0
eggplants 2 0
sauce 5 0
arrange 1 3 tomatoes eggplants sauce
bake 30 1 arrange
icecream 4
mix 5 0
heat 5 1 mix
churn 5 1 heat
freeze 240 1 churn

Sample Output 1
icecream
ovendish

Sample Input 2 Sample Output 2
2
recipea 4
stepa 5 0
stepb 5 1 stepa
stepc 2 0
stepd 2 1 stepc
recipeb 4
stepa 1 0
stepb 2 1 stepa
stepc 2 1 stepa
stepd 1 2 stepb stepc

recipea
recipeb

Sample Input 3 Sample Output 3
2
recipea 2
stepa 2 0
stepb 2 1 stepa
recipeb 2
stepa 5 0
stepb 5 1 stepa

recipeb
recipea

Problem D: Dimensional Debugging 8

D Dimensional Debugging Time limit: 2s

After struggling with this one problem for days, you have had enough! You are determined
to find the bug in your algorithm once and for all! To do so, you will start all over. From
scratch. At least you are sure you know the correct answer in the most trivial case: the
answer in (0, 0, . . . , 0) is 0.

You will re-solve the problem, which takes k parameters, using n simpler but slower algo-
rithms. Each algorithm has two bounds for every parameter i (Li and Hi). An algorithm is
only fast enough to run on inputs (x1, . . . , xk) where xi ≤ Hi for all parameters i. You are
confident the implementation of an algorithm is correct if you can verify its correctness at
least once on an input (x1, . . . , xk) where xi ≥ Li for all parameters i. To do so, you will need
another algorithm that you already proved to be correct and can handle such large inputs, or
your knowledge of the answer for (0, 0, . . . , 0).

Given a list of algorithms and their bounds, find the number of algorithms you are sure are
correctly implemented.

As an example, consider the first sample case shown in Figure D.1 on the left. The first
algorithm (red, bottom left) can be used to verify the correctness of the second (yellow, top
left) and third (blue, bottom right) algorithms. No algorithm can be used to verify the
correctness of the fourth algorithm (grey, top right).

Figure D.1: The algorithms to be tested in samples 1 and 2, respectively. The boxes indicate the
parameters where an algorithm must be tested, while the lighter background indicates the region

where an algorithm can be used to verify other algorithms.

Input

The input consists of:

• One line with two integers n and k (1 ≤ n ≤ 1000, 1 ≤ k ≤ 10), the number of
algorithms to test and the number of parameters.

• Then follow n pairs of lines:

– One line with k integers Li, . . . , Lk (0 ≤ Li ≤ 109 for all i).
– One line with k integers H1, . . . , Hk (0 ≤ Hi ≤ 109 for all i).

It is guaranteed that Li ≤ Hi for all 1 ≤ i ≤ k.

Problem D: Dimensional Debugging 9

Output

Output the number of algorithms of which you can verify the correctness.

Sample Input 1 Sample Output 1
4 2
0 0
4 3
1 2
4 6
3 1
7 2
6 4
8 5

3

Sample Input 2 Sample Output 2
4 2
0 0
4 3
0 2
5 5
7 1
8 2
5 5
8 6

4

Sample Input 3 Sample Output 3
3 1
1
10
10
100
0
1

3

Sample Input 4 Sample Output 4
3 3
0 0 1
2 2 1
1 0 0
2 3 4
0 1 0
3 4 5

0

Problem E: Extended Braille 10

E Extended Braille Time limit: 8s

The Blind Association for Pretty Calligraphy is annoyed by the lack of emoticons and math
symbols in the braille alphabet. Given that the braille alphabet is supported by the Unicode
format, it only makes sense to make all Unicode characters supported in braille.

The goal is to extend the braille alphabet to include all Unicode characters. Of course, this
will not fit in the standard 2 × 3 format, so using a bigger box is allowed. Important is
that no two braille characters are the same up to translation, i.e., have the same shape. See
Figure E.1 for an example. You let a designer make up a large braille alphabet, and your job
is to check how many unique shapes there are among the characters.

Figure E.1: Illustration of Sample Input 1:
two characters with the same shape.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the number of braille characters.

• Then for each of the n braille characters:

– One line with an integer m (1 ≤ m ≤ 1000), the number of dots.

– m lines, each with two integers x and y (|x| , |y| ≤ 1000), the coordinates of the
dots.

The total number of dots is at most 106.

Output

Output the number of distinct braille characters up to translation.

Problem E: Extended Braille 11

Sample Input 1 Sample Output 1
2
2
0 2
1 1
2
0 1
1 0

1

Sample Input 2 Sample Output 2
2
3
-1 0
0 1
1 0
3
-1 0
0 -1
1 0

2

Problem F: Fastestest Function 12

F Fastestest Function Time limit: 1s

A flamegraph.

You are working as a software developer for the Bug
Acquisition Programming Company. They developed
a specific piece of software called Program C that they
sell to their clients. For the past weeks, you have been
working on optimising a specific function foo in the
main code path in Program C. You have made it a lot
faster and would like to show off to your boss about
it.

Your IDE has a nice tool that allows you to profile your code and tell you what percentage
of the total running time foo takes. You can run this on the version before your change and
after your change. However, you think it looks a lot cooler if you can just tell your boss how
much faster you have made foo itself.

Input

The input consists of:

• One line with two integers x and y (0 < x, y < 100), where x is the percentage of the
total running time that foo took before optimising and y the percentage of the total
running time it took after optimising.

Output

Output the factor of how much faster foo got after your optimization.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
75 50 3.0

Sample Input 2 Sample Output 2
50 75 0.3333333333333333

Sample Input 3 Sample Output 3
50 50 1.0

Problem G: Guessing Primes 13

G Guessing Primes Time limit: 10s

Victory!

Your friends are all on board with the hype of a popular game,
where you need to guess a five-letter word in six tries. Unfortunately,
your language skills are not the greatest, so this game is not really
your cup of tea. However, your mathematics skills greatly outmatch
your friends’, so you start playing a game called “Brave Alternative
Primes Challenge”1 instead. In order to show off your skills to your
friends, you decide to write a program that will always beat the
game.

In this game, you need to guess a secret prime number of five digits
(i.e., between 104 and 105) in six turns. After guessing a prime
number, you will receive a response consisting of five characters,
each corresponding to a single digit in your guess:

• “g” (green) means you guessed the corresponding digit correctly;

• “y” (yellow) means that the digit is present in a position that is not yet green, but not
at this position;

• “w” (white) means that this digit is neither green nor yellow.

Note that the interactor colours at most one of your guessed digits per digit in the secret
answer. If your guess includes more occurrences of a digit than the answer, only some of
them will be green or yellow.

You win the game when the response is green for all five digits.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

The interactor first sends one line with an integer n (1 ≤ n ≤ 1000), the number of rounds.

Then, for each of the n rounds, your program should make at most 6 guesses, each guess
being a prime number of five digits (i.e., between 104 and 105). The interactor will respond
with a string of characters in “wyg”, as described above. A round ends when the response is
“ggggg”.

The interactor is not adaptive, i.e., the secret prime number is fixed during a round.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Using more than 6 queries in one round will result in a wrong answer.
1Original at https://converged.yt/primel/.

https://converged.yt/primel/

Problem G: Guessing Primes 14

Read Sample Interaction 1 Write
2

54323

ywyww

98737

wwwyg

31583

gggww

31517

ggggg

99991

wwwwy

44449

wgwgw

14143

ggggg

Problem H: Heavy Hauling 15

H Heavy Hauling Time limit: 3s

The Parcel Retriever Robot.
CC BY 2.0 by Enrique Dans on Flickr

The warehouse of the Boxes And Parcels Center (BAPC) just
received an official warning from the inspector: apparently, it
does not conform to the latest safety requirements. In the
past, it was allowed to stack multiple boxes at the same shelf
location, but due to the potential fire hazard, this is no longer
allowed. In a hurry, all employees of the BAPC are roused to
move the boxes to distinct positions.

After moving the boxes, the automated parcel retriever robot
needs to be reprogrammed such that it knows the correct loca-
tion of the boxes. Per box that is moved d positions, it takes d2 time to do this reprogramming.
Of course, the BAPC should be up and running as soon as possible after moving the boxes,
so the boxes should be moved in such a way that this total reprogramming time is as small as
possible. Calculate the minimal time for the reprogramming for an optimal moving of boxes.

The warehouse of the BAPC is unbounded in both directions.

As an example, consider Figure H.1, corresponding to the first sample case. One box at
position −1 is moved to the left, which costs 1 time for the reprogramming. The box at
position 4 is moved one position to the right, to make place for one of the boxes at position 3,
costing 1 time as well. Two boxes at position 3 are moved to the left (costing 1 and 4), and one
box at position 3 is moved to the right (costing 1), making the total cost 1+1+1+4+1 = 8.

-2 -1 0
 1
 2
 3
 4
 5

Figure H.1: Visualisation of the first sample case.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 106), the number of boxes.

• One line with n integers x (|x| ≤ 109), the position of each box. The box positions are
ordered non-decreasingly.

Problem H: Heavy Hauling 16

Output

Output the minimal time to reprogram the parcel retriever robot for an optimal moving of
boxes.

Sample Input 1 Sample Output 1
7
-1 -1 3 3 3 3 4

8

Sample Input 2 Sample Output 2
8
2 2 2 2 2 2 4 4

24

Problem I: Inked Inscriptions 17

I Inked Inscriptions Time limit: 4s

Image by José David Castillo Arias
from Pixabay.

The year is 1337. You are a hardworking monk in your abbey,
and today you have been tasked to make a copy of your abbey’s
psalm book. However, there is a problem. The old psalm book
sorted psalms by age: each time a new psalm made its way into
the abbey, it was added in the back. The head monk wants the
new book to be sorted by title instead to make specific psalms
easier to find. This means that you need to write all psalms
on different pages in the new book! Since there can be a lot of
psalms (each fitting on one page), this requires some careful planning.

To copy a psalm, both books need to be opened on the proper page.2 For example, suppose
that you want to copy a psalm from page 5 of the old book to page 8 of the new book. Also
suppose that the old book is currently opened on page 12 and the new book is opened on
page 3. Then, you need to flip |12 − 5| = 7 pages in the old book and |3 − 8| = 5 pages of the
new book to arrive at the proper pages. This takes 7 + 5 = 12 page flips in total. Since books
are very fragile and valuable, you want to limit the number of page flips needed to copy all
the psalms.

Both books are initially opened on page 1. In which order should you copy the psalms to
ensure that you use at most 2n

√
n page flips (rounded up)?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 104), the number of psalms.

• One line with a permutation of the integers 1 to n. If the i-th integer is j, then you
should copy the psalm on page i of the old book to page j of the new book.

Output

Output n pairs of integers, where each pair i and j indicates that the psalm on page i of the
old book should be copied to page j of the new book.

Each psalm should be copied exactly once and onto the correct page. The total number of
page flips needed to perform these instructions should be at most 2n

√
n, rounded up.

If there are multiple valid solutions, you may output any one of them. The number of required
page flips does not need to be minimal.

2Note that psalms are only written on the right-hand pages, and therefore, only the right-hand pages are
numbered.

Problem I: Inked Inscriptions 18

Sample Input 1 Sample Output 1
3
2 1 3

2 1
1 2
3 3

Sample Input 2 Sample Output 2
5
4 1 3 5 2

2 1
3 3
5 2
4 5
1 4

Problem J: Jabbing Jets 19

J Jabbing Jets Time limit: 1s

CC BY 3.0 by gratuit
on freeimageslive.co.uk

You have just gotten a new job at the Bathroom Accessories Production
Company. The first task you are given is to jab holes into showerheads.
To prove yourself, you have decided you want to create as many holes as
possible.

However, you cannot just randomly drill holes everywhere in the shower-
head.3 In order to ensure that the showerheads look aesthetically pleasing,
the company has composed some guidelines which you will have to follow.
See Figure J.1 for some examples of aesthetically pleasing showerheads.

• The holes should be arranged in concentric circles of radii
r1, r2, . . . , rn: the center of every hole should be on one of these circles.

• The distance between the centers of any two holes should be at least e.

How many holes can you make at most?

Figure J.1: Possible aesthetically pleasing showerheads for the first two samples.

Input

The input consists of:

• One line with two integers n and e (1 ≤ n, e ≤ 104), the number of circles and the
minimal distance between holes.

• One line with n integers r1, . . . , rn (1 ≤ ri ≤ 104), the radii of the circles.

It is guaranteed that the numbers ri are given in increasing order, and that ri+1 − ri ≥ e.
Furthermore, it is guaranteed that increasing any radius ri by at most 10−6 will not change
the final answer.

3At least, not without getting fired.

Problem J: Jabbing Jets 20

Output

Output the maximal number of holes that you can make in the showerhead.

Sample Input 1 Sample Output 1
4 1
2 3 5 7

104

Sample Input 2 Sample Output 2
2 2
2 5

21

Sample Input 3 Sample Output 3
3 20
14 53 80

44

Problem K: Knitting Patterns 21

K Knitting Patterns Time limit: 3s

Knitting Grandma.
Pixabay License

It is the most relaxing hobby of anyone’s grandma: knitting! Your
grandma uses a lot of wool, even for the most simple patterns that
she is knitting. You are sure that she can be more efficient with
her wool, so you decide to write a program that calculates the
most efficient use of wool.

A knitting pattern is a long list of stitches, where each stitch can
use a different colour.4 There is a cost for starting or ending the
use of a certain colour, for using the wool in a stitch, and for
letting it strand through the back unused. For a given knitting
pattern, calculate the least possible amount of wool required for
every colour of wool.

As an example, consider the first sample case. There are three colours of wool (red, green,
and blue). The red wool is used at the start and at the end of the pattern: it is most efficient
to start and stop using the red wool for both parts separately (4 · 4 = 16 cost), and it is used
in ten stitches (10 · 2 = 20 cost), giving a total cost of 36. The green and blue wool have the
same cost: start once (4 cost), use for five stitches (5 · 2 = 10 cost), strand along the back for
four stitches (4 · 1 = 4 cost), and stop using the colour (4 cost), giving a total cost of 22.

Input

The input consists of:

• One line with three integers a, b, and c (1 ≤ a < b < c ≤ 1000), the cost of letting the
wool strand through the back unused, the cost of using the wool in a stitch, and the
cost of starting or ending the use of a colour of wool.

• One line with a string w (1 ≤ |w| ≤ 26), representing the unique letters used for denoting
stitch colours.

• One line with a string p (1 ≤ |p| ≤ 106), representing the stitch colours of the knitting
pattern.

All stitch colours use English lowercase letters (a-z).

Output

Output, for every colour of wool, in the order as they are in w, the amount of wool used in
this pattern.

4Most real-life knitting patterns are two-dimensional, but since you zig-zag through such a pattern while
knitting, the input is one-dimensional for simplicity.

Problem K: Knitting Patterns 22

Sample Input 1 Sample Output 1
1 2 4
rgb
rrrrrgbgbgbgbgbrrrrr

36
22
22

Sample Input 2 Sample Output 2
2 4 1000
ab
abbbbbbbba

2024
2032

Problem L: Lots of Liquid 23

L Lots of Liquid Time limit: 1s

Some of the cube-shaped containers.
Used with permission from

BeautifulChemistry.net

You work at a warehouse that sells chemical products, where
somebody just placed an order for all the Boron Acetate Phos-
phoric Carbonate (BAPC) that you have in store. This liquid
is stored in many separate lots, in cube-shaped containers, but
your client requires the order to be delivered in a single cube-
shaped container that fits all the BAPC liquid perfectly. What
should be the size of this container?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the number of cube-shaped containers that
you have in store.

• One line with n floating-point numbers c (1 ≤ c ≤ 109), the length of one of the sides
for each of these containers.

Output

Output the length of one of the sides of the cube-shaped container that will contain all the
BAPC liquid.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
3
21 28 35

42

Sample Input 2 Sample Output 2
3
22.10 2022 1337

2200.6131345362505

Sample Input 3
3
1.41421356 2.718281828 3.1415926535

Sample Output 3
3.777901284526486

	Problems
	Abbreviated Aliases
	Bubble-bubble Sort
	Cookbook Composition
	Dimensional Debugging
	Extended Braille
	Fastestest Function
	Guessing Primes
	Heavy Hauling
	Inked Inscriptions
	Jabbing Jets
	Knitting Patterns
	Lots of Liquid

