Benelux
Algorithm
Programming
Contest

2016

Solutions

BAPC Preliminaries 2016

Delft University of Technology

September 24, 2016

Solutions — BAPC Preliminaries 2016 — September 24, 2016 1/18

Benelux
Algorithm

A: Block Game Eotea™"

2016

m Given stacks of height a > b, determine: can you win the
game? There are three cases to consider.
If b| a, you win by clearing the pile.
If b < a < 2b, you have only one possible move, to (b,a — b).
If a > 2b, then you also always win. The position (b, a%b)
must be winning or losing.
m Losing: moving to (b, a%b) is a winning move.
®m Winning: moving to (a%b + b, b) is a winning move, because
your opponent must move to (b, a%b).

HE B8 F

m So simulate the game as long as you are in case 2.

Solutions — BAPC Preliminaries 2016 — September 24, 2016

Benelux
Algorithm

B: Chess Tournament Frogramming

2016

Is the set of reported chess matches inconsistent?

In a graph:
m Players for nodes;
m Undirected edges for ties;
m Directed edges for victories.

Is there a cycle with at least one directed edge?

Standard cycle detection algorithms only work on directed or
undirected graphs, not mixed.

Large input, so efficient solution is necessary!

Solutions — BAPC Preliminaries 2016 — September 24, 2016 3/18

Benelux
Algorithm

B: Chess Tournament Programning

2016

If two players are connected by a sequence of ties, they are of
the same level.

Collect all players into groups, based on who they tied with.

m Make a new graph with groups as nodes, and an edge from
group A to group B if a player from A beat a player from B.

Use flood fill algorithm. Complexity O(E).
Look for cycles in this new graph. (Don't forget self-loops!)

Use a standard topological sort. Complexity: O(E).

Solutions — BAPC Preliminaries 2016 — September 24, 2016 4 /18

Benelux
Algorithm

C: Completing the Square oo
m This was the easy problem.
m We are given an isosceles right triangle.

m It is not so hard to determine the location of the missing
fourth corner once we know where the right angle is:

54 G .
PTG it w-—v
B i
q W
0 v

m How to find the right angle? Two options:
m Look at the pairwise distances.
m Look at the angles. (Two vectors p and g make a right angle
at the origin if and only if the inner product p - q is zero.)

Solutions — BAPC Preliminaries 2016 — September 24, 2016 5/18

Benelux
Algorithm

D: Hamming Ellipses (1) Fromhg

2016

m Task: Count the number of length-n strings over g symbols
where hammingdist(p, f;) + hammingdist(p,) = D.
A=01201, A=21210 , p=10002
m In positions where f; matches f;, the symbol in p may
m (ki) match f; and £, or
m (ky) differ from both f; and f; in (g — 1) ways.
m In positions where f; differs from f>, the symbol in p may
m (k3) differ from both £ and £ in (g — 2) ways, or
m (kq) differ from either f; or £, in 2 ways.
m Calculate w = hammingdist(f;,)
m For all ky, k3, kg such that ko < n— w and k3 + k4 = w and
2k + 2k3 + kg = D, count the number of points on the ellipse:

oo () 0

m Must be very careful to avoid overflow of int64_t

Solutions — BAPC Preliminaries 2016 — September 24, 2016 6 /18

Benelux
Algorithm

D: Hamming Ellipses (2) Fromhg

2016

Task: Count the number of length-n strings over g symbols
where hammingdist(p, f;) + hammingdist(p,) = D.

m Alternative solution: dynamic programming over D and n.

m Construct a table npoint[k, d] = number of points at distance
d, considering only the first k symbols of the strings.

m If f; and f, match at position k:

npoint[k, d] = npoint[k — 1, d] + (¢ — 1) npoink — 1, d — 2]
m If 1 and £, differ at position k:

npoint[k, d] = (g—2) npoint[k—1, d—2]+2 npoint[k—1, d—1]
m Final answer is npoint[n, D]

m Easier and safe against overflow.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 7/18

Benelux
Algorithm

E: Lost in the Woods Frogramming

2016

m What is the expected amount of time until your friend finds
the exit?

m We can simulate the situation. Instead of simulating a single
instance, we “simulate them all at once” as a Markov chain.

m Begin by putting probability weight 1 on the starting node,
and 0 on all other nodes.

m At each step, redistribute the probability at each node to the
nodes around it.

m Remove the weight at the exit of the woods, and update the
expected time. Then repeat.

m Stop once the probability weight left in the woods is small
enough.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 8 /18

Benelux
Algorithm

E: Lost in the Woods Eotea™"

2016

m Put weight 1 on starting node, 0 elsewhere.

m At each step: redistribute, update expected time.

e

4

Solutions — BAPC Preliminaries 2016 — September 24, 2016

Benelux
Algorithm

F: Memory Match Erogmming

2016

m Simulate the previous actions in the game and build a partial
list of known card pictures.
Mark pairs that are already matched.

m Build a Map from picture name to card position.

m Each card is now in one of four states:

(a) Already matched.

(b) Picture known, location of matching card known.
(c) Picture known, location of matching card unknown.
(d) Picture unknown.

m Every two cards of type (b) can be matched.

m If there is an equal number of cards of types (c) and (d),
every unknown card can be matched with a known card.

m Otherwise, if there are exactly two cards of type (d), they can
be matched together.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 10 / 18

Benelux
Algorithm

G: Millionaire Madness Programning

2016

m Given a rectangular grid of heights, find the least kK > 0 such
that there is a path from one corner to another using a ladder
at most k.

m There can be up to 10° points in the grid — an efficient
algorithm is necessary!

m Use a variant of Dijkstra’s algorithm with the priority queue
sorting on required ladder length (shortest first).

m Alternatively, use binary search and repeated flood fills (BFS)
to find the least k for which you can traverse the grid.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 11 /18

Benelux
Algorithm

H: Presidential Elections Programning

2016

m The problem is a variation on the classical 0-1 knapsack
problem, which can be solved using dynamic programming.

m For each state i let A; denote the number of additional votes
required to win this state:

A,-:maxQWJ +1-G, o).

the absolute majority

If we have A; > U;, then there is no way to win this state.

m Take as knapsack items all states satisfying A; < U;. All other
states are discarded. The i-th state has price A; and value D;.

m Find cheapest way to fill strictly more than half of your
knapsack with these items (standard 0-1 knapsack algorithm).

m Time complexity: O(S - Diot), where Dy denotes the total
number of delegates, all states combined.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 12 /18

Benelux
Algorithm

l: Rock Band Frogranming

m Need to draw a vertical line such that each song only occurs
on one side of the line:

45216837
52 4/8 6 137
2 54/816 37

m Find leftmost such line.

m Can be solved greedily in O(MS) time. For instance:

m Precompute for each song its worst ranking.

m Start with a vertical line after the first column.

m Process all columns lying left of the line. If we encounter a
song here whose worst ranking is right of the line, move the
line further to the right, just beyond this worst ranking.
Stop once we have a stable set (all columns left of the line
have been processed).

m Other similar greedy solutions will also work.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 13 /18

Benelux
Algorithm

l: Rock Band Frogranming

2016

m Alternative solution: create a directed graph of songs where
an arrow X — Y means

[“If we play song X, then we should also play song Y."]

m For each band member we add a path of S — 1 edges:

@D
OO0
Q-0

(Image is a little misleading; we have one vertex per song.)
m To find the minimum length set list:
m Pick one song X that we know has to be played. Any song
ranked first by one of the band members suffices.
m Find the set of all songs reachable from X.
m This always gives the unique minimum length set list.

m Use BFS/DFS on a graph with S vertices and M(S — 1) edges.
Time complexity: O(MS).

Solutions — BAPC Preliminaries 2016 — September 24, 2016 14 /18

Benelux
Algorithm

J: Target Practice Ergammine

2016

m Given a set of points, find out if two lines cover them.
m Ways to find at least one of the lines (if two covering lines

exist):
m Of any five points, three must be collinear. This gives one of
the lines.

m Of any three points, two must lie on one of the lines.
m By repeatedly randomly picking two points, you are almost
guaranteed to get two points on the same line.
m Once you have a candidate for one of the lines, it is easy to
check if all remaining points lie on a line.

Solutions — BAPC Preliminaries 2016 — September 24, 2016

Benelux
Algorithm

K: Translators’ Dinner Programning

2016

m Let languages be nodes and translators be edges.

m Given a connected graph, give a matching of the edges, or
report that no such matching exists.

m Theorem: a matching exists if and only if the number of edges
is even.

m A proof of this theorem often leads to an algorithm, or vice
versal

Solutions — BAPC Preliminaries 2016 — September 24, 2016 16 / 18

Benelux
Algorithm

K: Translators’ Dinner Programning

2016

m One solution uses an almost spanning tree, or AST.

m An AST on a graph G is a subtree of G which contains all
vertices, except possibly some vertices of degree 1, which
connect directly to the tree.

= Any spanning tree is also an AST.
m Any graph with an AST is connected.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 17 / 18

Benelux
Algorithm

K: Translators’ Dinner Programning

2016

m Construct an AST T on the graph (by making a spanning
tree).

m For aleaf /| € T, if there are at least two edges incident to /
which are not in T; match them and remove them from the
graph.

m Repeat until there are zero or one such edges left.

m One: match that edge with the edge that connects the leaf to
the tree and remove both of them from the graph.
m Zero: remove the leaf from T (but not the graph).

m Repeat with a new leaf until T (and thus the graph) is empty.

m Because T is always an AST, this works.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 18 / 18

