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Statistics

problem correct/submissions fastest

E - Please, go first 62/106 25
B - Bird Tree 44/83 34
C - Move to Front 33/171 20
A - Binomial Coefficients 18/135 22
H - Tichu 13/40 115
I - Tracking RFIDs 7/31 88
G - Smoking Gun 3/63 134
D - Piece it Together 3/39 260
J - Train delay 1/9 279
F - Pool construction 0/2 N/A
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E - Please, go first

I Sample case 2: Ab9AAb2bC2

I The last person in the line will stay the last person

I All his friends line up in front of him: Ab9AAbbC22

I Then the last person that isn’t his friend: Ab9AAbbC22

I And his friends (in this case none)

I Then the next: Ab9AAbbC22

I And his friends: A9AAbbbC22

I And so on. Final order: 9AAAbbbC22

I Now you know the final ordering, count the saved time

I Time saved by X is number of positions that the last X
moved forward times the number of Xs
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E - Please, go first (source code)
#include <iostream>

#include <vector>

#include <string>

#include <cctype>

using namespace std;

int main () {

int runs;

cin >> runs;

while (runs--) {

int n;

string s;

cin >> n >> s;

vector<int> cnt(128,0);

for (int i=0; i<n; i++) cnt[s[i]]++;

int res = 0, num_used = 0;

vector<bool> used(128,false);

for (int i=n-1; i>=0; i--) {

if (!used[s[i]]) {

res += (num_used-(n-1-i))*cnt[s[i]];

num_used += cnt[s[i]];

used[s[i]] = true;

}

}

cout << 5 * res << endl;

}

return 0;

}
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B - Bird tree

I Root: 1/1, left: 1/(T + 1), right:1 + 1/T

I If a/b < 1, go left, else go right

I If left, replace a/b → (b/a)− 1 = (b − a)/a

I If right, replace a/b → 1/(a/b − 1) = b/(a− b)

I Proceed with first step

I Stop once you encounter a/b = 1/1
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B - Bird tree (source code)
#include <iostream>

#include <string>

using namespace std;

int main () {

int runs;

cin>>runs;

while (runs--) {

int a,b;

char c;

cin >> a >> c >> b;

while (a>1 || b>1) {

if (a<b) {

cout << "L";

b -= a;

}

else {

cout << "R";

a -= b;

}

swap(a,b);

}

cout << endl;

}

return 0;

}
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C - Movie collection

I Note, since m, r = 100 000, you cannot update the stack
in O(m) time

I Therefore you need some smart data structure to store
information

I Binary indexed tree/Fenwick tree does the job in
O(log(m)) time

I At every step, take movie x and put it back on -1,-2,-3,. . .
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C - Movie collection

Note that this is also O(n2):

for (int j = 0; j < r; j++) {

movie = sc.nextInt();

index = movies.indexOf(movie);

System.out.print("" + (m - index - 1) + " ");

movies.removeElementAt(index);

movies.add(movie);

}
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A - Binomial coefficients (1)

I Find n, k such that
(n
k

)
= n!

k!(n−k)! = x

I Only look for solutions with k ≤ n/2 and count twice if
necessary

I Loop over k from 0 to
(2k
k

)
> x

I Binary search for n

I Be really careful with overflows!
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H - Tichu (1)

I Greedy solution

I Brute force over two straights

I Greedily take quads, full houses, trips, pair and singletons
from the remaining cards

I One tricky case: 2 full houses is better than 1 quads + 2
trips
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H - Tichu (2)

I Bitmask dynamic programming solution

I For each subset (213 = 8192) determine whether it is a
valid combination

I DP step: best[x ] = best[x&!y ] + 1 with x , y bitmasks,
x&y = y and y a valid combination
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G - Smoking gun

I Calculate tij , the minimal time difference between i
shooting and j shooting: ti ≤ tj + tij

I “k heard i shoot before j” leads to tij = dkj − dki
I Use Floyd-Warshall to draw inferences: tij ≤ tik + tkj
I This is all information that needs to be obtained

I If tii < 0, it is impossible

I Otherwise, find i such that tij < 0 for all j

I If multiple, it is unknown

I Otherwise, this gives the unique solution
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I Otherwise, this gives the unique solution
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I - Tracking RFIDs

I To determine whether a sensor can see product, calculate
the distance between them

I Subtract the number of intersecting walls and compare this
with r

I Problem: you cannot do this for all pairs of sensors and
products

I Note: since sensors are separated by at least r , only a few
sensors can possibly be in range of a product

I One possible solution: store all sensors in a search tree
(e.g. C++’s set or Java’s TreeSet)

I For each product, look if a sensor at (x + δx , y + δy)
exists for −r ≤ δx , δy ≤ r

I More difficult solutions using binning, quad trees are also
possible
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I - Tracking RFIDs (test case)

I A maximum of 6 sensors can be in range of a product:

90, 0= 925, 0=

97, 24=

97, -24=

9-20, 15=

9-20, -15=
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D - Piece it together (1)

I Solution: not matching/max.flow

I Solution: not backtrack

I Solution: 2SAT

I First, check white = 2× black

I Boolean variables: x is part of the same puzzle piece as y
(x , y adjacent)

I Black square should be connected to its left xor right white
neighbor: (A|B)&(!A|!B)

I Identically, it should be connected to its upper or lower
neighbor

I White square should be connected to at most one black
square: (!A|!B)&(!A|!C )&(!B|!C ) etc.

I Now you can use a standard 2SAT solution
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D - Piece it together (2)

I But this problem has way more structure!

I You can divide the problem in four subproblems

I Take white squares at x = a mod 2 and y = b mod 2
(a, b = 0, 1) and adjacent black squares

I Each connected component of these subproblems should
have white = black

I If so, it’s possible to solve the puzzle, otherwise, it’s not
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D - Piece it together (source code)

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int Y,X,W,B,py,px;

vector<string> s;

vector<vector<bool> > u;

void go (int y, int x) {

if (y<0||y>=Y||x<0||x>=X) return;

if (u[y][x]) return;

u[y][x]=true;

if (s[y][x]==’.’) return;

if (s[y][x]==’W’ && (y+py)%2+(x+px)%2!=0)

return;

if (s[y][x]==’B’ && (y+py)%2+(x+px)%2!=1)

return;

if (s[y][x]==’W’) W++;

if (s[y][x]==’B’) B++;

go(y-1,x);

go(y+1,x);

go(y,x-1);

go(y,x+1);

}

int main () {

int runs;

cin >> runs;

while (runs--) {

cin >> Y >> X;

s = vector<string>(Y);

for (int y=0; y<Y; y++)

cin >> s[y];

bool ok=true;

for (px=0; px<2; px++)

for (py=0; py<2; py++) {

u = vector<vector<bool> >

(Y,vector<bool>(X, false));

for (int y=0; y<Y; y++)

for (int x=0; x<X; x++) {

W=B=0;

go(y,x);

if (W!=B) ok=false;

}

}

cout << (ok ? "YES" : "NO") << endl;

}

return 0;

}
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J - Train delays (1)

I Calculate best expected time best[x , t] for each station x
and time t = 0 . . . 59

I Easiest: use Bellman-Ford algorithm for shortest paths

I Initially, best[end , t] = 0 and best[other , t] =∞
I Loop over all trains, calculate potential new expected time

best[from, depart]

I If it’s better, update best[from, depart] and best[from, t]
for all t

I Repeat until nothing changes anymore

I Use epsilon when comparing doubles!
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J - Train delays (2)

I Calculate best expected time best[x , t] for each station x
and time t = 0 . . . 59

I Harder: use Dijkstra’s algorithm for shortest paths

I Issue: sometimes you have to update the same state
multiple times

I At most 60 times though



Solutions

Statistics

Problem E

Problem B

Problem C

Problem A

Problem H

Problem G

Problem I

Problem D

Problem J

Problem F

The end

J - Train delays (2)

I Calculate best expected time best[x , t] for each station x
and time t = 0 . . . 59

I Harder: use Dijkstra’s algorithm for shortest paths

I Issue: sometimes you have to update the same state
multiple times

I At most 60 times though



Solutions

Statistics

Problem E

Problem B

Problem C

Problem A

Problem H

Problem G

Problem I

Problem D

Problem J

Problem F

The end

J - Train delays (2)

I Calculate best expected time best[x , t] for each station x
and time t = 0 . . . 59

I Harder: use Dijkstra’s algorithm for shortest paths

I Issue: sometimes you have to update the same state
multiple times

I At most 60 times though



Solutions

Statistics

Problem E

Problem B

Problem C

Problem A

Problem H

Problem G

Problem I

Problem D

Problem J

Problem F

The end

J - Train delays (2)

I Calculate best expected time best[x , t] for each station x
and time t = 0 . . . 59

I Harder: use Dijkstra’s algorithm for shortest paths

I Issue: sometimes you have to update the same state
multiple times

I At most 60 times though



Solutions

Statistics

Problem E

Problem B

Problem C

Problem A

Problem H

Problem G

Problem I

Problem D

Problem J

Problem F

The end

F - Pool construction

I Solution: maximum flow

I First, fill all boundary squares
I Construct the following flow graph:

I Vertices: source, sink, every square
I Edge from source to boundary square with capacity ∞
I Edge from source to non-boundary grass square with

capacity D (dig)
I Edge from non-boundary hole square to sink with capacity

F (fill)
I Edges between connected squares with capacity B

(boundary)

I You can show that the cost of a cut of this graph equals
the cost of splitting it into grass and holes along this cut

I So find the minimum cut, i.e., the maximum flow
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