
CEPC 2010
problemset discussion

()November 21, 2010 1 / 25

CERC 2010
problemset discussion

()November 21, 2010 1 / 25

...but first a few statistics for your amusement!
The total size of all submits was 2004450. Only 457380 of this code was
bug-free.
First correct submission was at 09:40:00 (pretty quick, eh?). And the last
correct submission was at 14:25:04.
The longest series of unsuccessful submits with a happy end (i.e., getting
AC) was 11.
We got submissions in c, cpp, Java, and Pascal. The percentage of
accepted submissions in each language was:

c 0.145455
cpp 0.274306
Java 0.0652174

Pascal 0.25

()November 21, 2010 2 / 25

...but first a few statistics for your amusement!
The total size of all submits was 2004450. Only 457380 of this code was
bug-free.
First correct submission was at 09:40:00 (pretty quick, eh?). And the last
correct submission was at 14:25:04.
The longest series of unsuccessful submits with a happy end (i.e., getting
AC) was 11.
We got submissions in c, cpp, Java, and Pascal. The percentage of
accepted submissions in each language was:

c 0.145455
cpp 0.274306
Java 0.0652174

Pascal 0.25

()November 21, 2010 2 / 25

...but first a few statistics for your amusement!
The total size of all submits was 2004450. Only 457380 of this code was
bug-free.
First correct submission was at 09:40:00 (pretty quick, eh?). And the last
correct submission was at 14:25:04.
The longest series of unsuccessful submits with a happy end (i.e., getting
AC) was 11.
We got submissions in c, cpp, Java, and Pascal. The percentage of
accepted submissions in each language was:

c 0.145455
cpp 0.274306
Java 0.0652174

Pascal 0.25

()November 21, 2010 2 / 25

...but first a few statistics for your amusement!
The total size of all submits was 2004450. Only 457380 of this code was
bug-free.
First correct submission was at 09:40:00 (pretty quick, eh?). And the last
correct submission was at 14:25:04.
The longest series of unsuccessful submits with a happy end (i.e., getting
AC) was 11.
We got submissions in c, cpp, Java, and Pascal. The percentage of
accepted submissions in each language was:

c 0.145455
cpp 0.274306
Java 0.0652174

Pascal 0.25

()November 21, 2010 2 / 25

...but first a few statistics for your amusement!
The total size of all submits was 2004450. Only 457380 of this code was
bug-free.
First correct submission was at 09:40:00 (pretty quick, eh?). And the last
correct submission was at 14:25:04.
The longest series of unsuccessful submits with a happy end (i.e., getting
AC) was 11.
We got submissions in c, cpp, Java, and Pascal. The percentage of
accepted submissions in each language was:

c 0.145455
cpp 0.274306
Java 0.0652174

Pascal 0.25

()November 21, 2010 2 / 25

G - Game
RTE WA TLE AC

1 86 18 81

..nothing to see here, really!

()November 21, 2010 3 / 25

I - Insults
RTE WA TLE AC

13 45 14 30

You are given a well-bracketed word w [1..n] and asked to find the
lexicographically next one (or detect there is none).
Check the prefixes of w one-by-one, starting with the longest one. Try to
extend w [1..k − 1] by one letter (lexicographically) bigger than w [k].
When is it possible?

If w [k] is a closing bracket, there must be a corresponding open
bracket.

It must be possible to close all f open brackets using the n − k free
places. If there are more than n − k open brackets, it is clearly
impossible. Otherwise it is possible, and the lexicographically best

way of doing that is to first append a
n−k−f

2 e
n−k−f

2 and then close all
open brackets.

()November 21, 2010 4 / 25

I - Insults
RTE WA TLE AC

13 45 14 30

You are given a well-bracketed word w [1..n] and asked to find the
lexicographically next one (or detect there is none).
Check the prefixes of w one-by-one, starting with the longest one. Try to
extend w [1..k − 1] by one letter (lexicographically) bigger than w [k].
When is it possible?

If w [k] is a closing bracket, there must be a corresponding open
bracket.

It must be possible to close all f open brackets using the n − k free
places. If there are more than n − k open brackets, it is clearly
impossible. Otherwise it is possible, and the lexicographically best

way of doing that is to first append a
n−k−f

2 e
n−k−f

2 and then close all
open brackets.

()November 21, 2010 4 / 25

E - Enter The Dragon
RTE WA TLE AC

17 88 51 53

We are given a forecast t[1], t[2], . . . , t[n]. Each t[i] is

0, meaning that the day is non-rainy, and we can use it to empty one
lake.

nonzero, meaning that the corresponding lake should be empty.

How to decide which lake should be made empty on each non-rainy day?
Go through the sequence from left to right, for each nonzero t[i] choose
j < i such that t[j] = 0 and:

j is as small as possible? WRONG

j is as small as possible, but greater than the previous occurrence of
t[i].

You can use set for selecting j for O(n log n) running time. Or you can
use union-find to get O(n log∗ n). Or...

()November 21, 2010 5 / 25

E - Enter The Dragon
RTE WA TLE AC

17 88 51 53

We are given a forecast t[1], t[2], . . . , t[n]. Each t[i] is

0, meaning that the day is non-rainy, and we can use it to empty one
lake.

nonzero, meaning that the corresponding lake should be empty.

How to decide which lake should be made empty on each non-rainy day?
Go through the sequence from left to right, for each nonzero t[i] choose
j < i such that t[j] = 0 and:

j is as small as possible? WRONG

j is as small as possible, but greater than the previous occurrence of
t[i].

You can use set for selecting j for O(n log n) running time. Or you can
use union-find to get O(n log∗ n). Or...

()November 21, 2010 5 / 25

D - Defense Lines
RTE WA TLE AC

29 65 77 45

We have a sequence of n numbers t[1], t[2], . . . , t[n]. We can remove any
of its consecutive fragments. Then we compute the length of the longest
consecutive increasing subsequence. What is the maximum possible length
we can get?
First for any i compute two values:

starting [i], the longest consecutive increasing subsequence starting at
the i-th position,

ending [i], the longest consecutive increasing subsequence ending at
the i-th position.

Then the problem reduces to maximizing ending [i] + starting [j] for i < j
such that t[i] < t[j]. How to do that?

()November 21, 2010 6 / 25

D - Defense Lines
RTE WA TLE AC

29 65 77 45

We have a sequence of n numbers t[1], t[2], . . . , t[n]. We can remove any
of its consecutive fragments. Then we compute the length of the longest
consecutive increasing subsequence. What is the maximum possible length
we can get?
First for any i compute two values:

starting [i], the longest consecutive increasing subsequence starting at
the i-th position,

ending [i], the longest consecutive increasing subsequence ending at
the i-th position.

Then the problem reduces to maximizing ending [i] + starting [j] for i < j
such that t[i] < t[j]. How to do that?

()November 21, 2010 6 / 25

Go through the sequence from left to right. For each j try to find the best
i , i.e., maximize ending [i] among all already processed i such that
t[i] < t[j]. Plenty of ways to do that.

Use a static (or balanced) binary search tree.

Define best[k] equal to the smallest possible value of t[i] such that
ending [i] = k . Then observe that:

all best[k] are nondecreasing.
adding new t[i] requires updating at most one best[k].
having the values of best[k] allows computing the maximum possible
value of ending [i] with just one binary search.

()November 21, 2010 7 / 25

Go through the sequence from left to right. For each j try to find the best
i , i.e., maximize ending [i] among all already processed i such that
t[i] < t[j]. Plenty of ways to do that.

Use a static (or balanced) binary search tree.

Define best[k] equal to the smallest possible value of t[i] such that
ending [i] = k . Then observe that:

all best[k] are nondecreasing.
adding new t[i] requires updating at most one best[k].
having the values of best[k] allows computing the maximum possible
value of ending [i] with just one binary search.

()November 21, 2010 7 / 25

C - Casting Spells
RTE WA TLE AC

19 63 12 23

We are asked to find the longest subword of the form wwRwwR , or, in
other words, the longest even palindrome composed of two smaller even
palindromes.
First we would like to construct a succint description of all palindromic
subwords of the input word s. More specifically, for each i we would like to
compute the largest k such that s[i] = s[i − 1], s[i + 1] = s[i − 2], ...,
s[i + k] = s[i − k − 1].
This k = r(i) is called the palindromic radius at i . There are quite a few
ways to compute it.

1 use the Manacher’s algorithm which computes all r(i) in O(n) time.

2 use a separate binary search at each position i . For this to work we
need an efficient way of checking if two fragments of s are equal, this
can be done using hashing. Total time is O(n log n).

()November 21, 2010 8 / 25

C - Casting Spells
RTE WA TLE AC

19 63 12 23

We are asked to find the longest subword of the form wwRwwR , or, in
other words, the longest even palindrome composed of two smaller even
palindromes.
First we would like to construct a succint description of all palindromic
subwords of the input word s. More specifically, for each i we would like to
compute the largest k such that s[i] = s[i − 1], s[i + 1] = s[i − 2], ...,
s[i + k] = s[i − k − 1].
This k = r(i) is called the palindromic radius at i . There are quite a few
ways to compute it.

1 use the Manacher’s algorithm which computes all r(i) in O(n) time.

2 use a separate binary search at each position i . For this to work we
need an efficient way of checking if two fragments of s are equal, this
can be done using hashing. Total time is O(n log n).

()November 21, 2010 8 / 25

Now we are left with the fun part of the problem.

()November 21, 2010 9 / 25

Now we are left with the fun part of the problem.

()November 21, 2010 9 / 25

Now we are left with the fun part of the problem.

()November 21, 2010 9 / 25

Now we are left with the fun part of the problem.

So for a given center i we are looking for the leftmost j such that:

j + r(j) ≥ i ,

j ≥ i − r(i)
2 .

Finding best possible values of j for all i can be done in a single left to
right sweep. We store the possible candidates in a structure allowing
inserting, erasing, and finding successor. Can be done (again) using set.

()November 21, 2010 9 / 25

F - Fields and Farmers
RTE WA TLE AC

1 39 2 11

The problem statement describes a process of adding fields to already
existing ones. We will call the final result the strange hull of the given
initial set of fields.

()November 21, 2010 10 / 25

F - Fields and Farmers
RTE WA TLE AC

1 39 2 11

The problem statement describes a process of adding fields to already
existing ones. We will call the final result the strange hull of the given
initial set of fields.

()November 21, 2010 10 / 25

F - Fields and Farmers
RTE WA TLE AC

1 39 2 11

The problem statement describes a process of adding fields to already
existing ones. We will call the final result the strange hull of the given
initial set of fields.

()November 21, 2010 10 / 25

F - Fields and Farmers
RTE WA TLE AC

1 39 2 11

The problem statement describes a process of adding fields to already
existing ones. We will call the final result the strange hull of the given
initial set of fields.

()November 21, 2010 10 / 25

F - Fields and Farmers
RTE WA TLE AC

1 39 2 11

The problem statement describes a process of adding fields to already
existing ones. We will call the final result the strange hull of the given
initial set of fields.

()November 21, 2010 10 / 25

The problem asks you to count the subsets of the original set of fields with
the same strange hull. First lets try to find its efficient characterization.
First note that if there are no initial fields on the left of some line x = a,
there are no such fields in the hull as well. The same applies to lines
y = a, y = x + a, y = −x + a but is not necessarily true for other lines!
We claim that in fact this characterizes all fields in the strange hull. In
other words, it contains all fields (x , y) adding which does not change the
minimum/maximum values of x , y , x − y , x + y .

()November 21, 2010 11 / 25

The problem asks you to count the subsets of the original set of fields with
the same strange hull. First lets try to find its efficient characterization.
First note that if there are no initial fields on the left of some line x = a,
there are no such fields in the hull as well. The same applies to lines
y = a, y = x + a, y = −x + a but is not necessarily true for other lines!
We claim that in fact this characterizes all fields in the strange hull. In
other words, it contains all fields (x , y) adding which does not change the
minimum/maximum values of x , y , x − y , x + y .

()November 21, 2010 11 / 25

()November 21, 2010 12 / 25

How to prove such claim? Consider the situation on two neighbouring
segments of the boundary.

()November 21, 2010 13 / 25

How to prove such claim? Consider the situation on two neighbouring
segments of the boundary.

()November 21, 2010 13 / 25

How to prove such claim? Consider the situation on two neighbouring
segments of the boundary.

()November 21, 2010 13 / 25

How to prove such claim? Consider the situation on two neighbouring
segments of the boundary.

()November 21, 2010 13 / 25

How to prove such claim? Consider the situation on two neighbouring
segments of the boundary.

()November 21, 2010 13 / 25

We still haven’t solved the original problem, but now we know that it
reduces to something like: given a collection of pairs (xi , yi) count its
subsets with the same values of minimum/maximum x , y , x + y , x − y .
In other words, we must take at least one pair with the
minimum/maximum value of x , y , x + y , x − y . But... there can be so
many choices here...
For each pair construct an small set Bi ⊆ {1, 2, . . . , 8} describing which
minimum/maximum values it achieves. Then we should count ways to
choose a subset which sums up to the whole {1, 2, 3, . . . , 8}.
This can be done using the inclusion-exclusion principle: we can easily
count the ways to choose a subset which sums up to something contained
in some specified X , lets call this quantity f (X). Then reconstruct the
answer for all such partial data:∑

X⊆{1,2,3,...,8}

(−1)|X |f (X)

()November 21, 2010 14 / 25

We still haven’t solved the original problem, but now we know that it
reduces to something like: given a collection of pairs (xi , yi) count its
subsets with the same values of minimum/maximum x , y , x + y , x − y .
In other words, we must take at least one pair with the
minimum/maximum value of x , y , x + y , x − y . But... there can be so
many choices here...
For each pair construct an small set Bi ⊆ {1, 2, . . . , 8} describing which
minimum/maximum values it achieves. Then we should count ways to
choose a subset which sums up to the whole {1, 2, 3, . . . , 8}.
This can be done using the inclusion-exclusion principle: we can easily
count the ways to choose a subset which sums up to something contained
in some specified X , lets call this quantity f (X). Then reconstruct the
answer for all such partial data:∑

X⊆{1,2,3,...,8}

(−1)|X |f (X)

()November 21, 2010 14 / 25

We still haven’t solved the original problem, but now we know that it
reduces to something like: given a collection of pairs (xi , yi) count its
subsets with the same values of minimum/maximum x , y , x + y , x − y .
In other words, we must take at least one pair with the
minimum/maximum value of x , y , x + y , x − y . But... there can be so
many choices here...
For each pair construct an small set Bi ⊆ {1, 2, . . . , 8} describing which
minimum/maximum values it achieves. Then we should count ways to
choose a subset which sums up to the whole {1, 2, 3, . . . , 8}.
This can be done using the inclusion-exclusion principle: we can easily
count the ways to choose a subset which sums up to something contained
in some specified X , lets call this quantity f (X). Then reconstruct the
answer for all such partial data:∑

X⊆{1,2,3,...,8}

(−1)|X |f (X)

()November 21, 2010 14 / 25

J - Justice for all
RTE WA TLE AC

0 6 0 3

You are asked to construct a (not too big) simple bipartite graph with
exactly C perfect matchings, with C ≤ 106.
Easy to see that for any C there exists a graph with exactly C perfect
matchings. But the problem is to keep is small...
First idea: if you can construct a small G1 with exactly C1 matchings, and
a small G2 with exactly C2 matchings, you can simply take their disjoint
union, which has C1C2 matchings.
Maybe you could somehow combine them to get something with C1 + C2

matchings?
Maybe...

Try to use a stronger assumption on the structure of G1 and G2 (a little bit
like making the induction hypothesis stronger to make the proof easier).

()November 21, 2010 15 / 25

J - Justice for all
RTE WA TLE AC

0 6 0 3

You are asked to construct a (not too big) simple bipartite graph with
exactly C perfect matchings, with C ≤ 106.
Easy to see that for any C there exists a graph with exactly C perfect
matchings. But the problem is to keep is small...
First idea: if you can construct a small G1 with exactly C1 matchings, and
a small G2 with exactly C2 matchings, you can simply take their disjoint
union, which has C1C2 matchings.
Maybe you could somehow combine them to get something with C1 + C2

matchings?
Maybe...

Try to use a stronger assumption on the structure of G1 and G2 (a little bit
like making the induction hypothesis stronger to make the proof easier).

()November 21, 2010 15 / 25

J - Justice for all
RTE WA TLE AC

0 6 0 3

You are asked to construct a (not too big) simple bipartite graph with
exactly C perfect matchings, with C ≤ 106.
Easy to see that for any C there exists a graph with exactly C perfect
matchings. But the problem is to keep is small...
First idea: if you can construct a small G1 with exactly C1 matchings, and
a small G2 with exactly C2 matchings, you can simply take their disjoint
union, which has C1C2 matchings.
Maybe you could somehow combine them to get something with C1 + C2

matchings?
Maybe...

Try to use a stronger assumption on the structure of G1 and G2 (a little bit
like making the induction hypothesis stronger to make the proof easier).

()November 21, 2010 15 / 25

Construct a sequence of graphs GC (s, t) with two distinguished vertices s
(source) and t (sink), with the property that after adding {s, t} to the set
of edges, there are exactly C + 1 perfect matchings. More specifically,
there are C matchings on GC (s, t), and exactly 1 on GC (s, t) with both s
and t removed.
G1(s, t) is just a single edge.

()November 21, 2010 16 / 25

Construct a sequence of graphs GC (s, t) with two distinguished vertices s
(source) and t (sink), with the property that after adding {s, t} to the set
of edges, there are exactly C + 1 perfect matchings. More specifically,
there are C matchings on GC (s, t), and exactly 1 on GC (s, t) with both s
and t removed.
G1(s, t) is just a single edge.

()November 21, 2010 16 / 25

Construct a sequence of graphs GC (s, t) with two distinguished vertices s
(source) and t (sink), with the property that after adding {s, t} to the set
of edges, there are exactly C + 1 perfect matchings. More specifically,
there are C matchings on GC (s, t), and exactly 1 on GC (s, t) with both s
and t removed.
G1(s, t) is just a single edge.

()November 21, 2010 16 / 25

H - Hanging Hats
RTE WA TLE AC

2 14 4 3

The problem reduces to storing a dynamic set of 2D points in a structure
allowing efficient reporting of all points inside regions of the form:

1 y ≤ min(x + y0 − x0,−x + x0 + y0) for some (x0, y0),

2 y ≤ min(2x + y0 − 2x0,−2x + 2x0 + y0) for some (x0, y0).

For starters lets assume that we care only about the first type regions.
Each such region can be split into two parts along the x = x0 line so we
can focus on reporting the points inside a region bounded by x = x0 and
y = x + y0 − x0.

()November 21, 2010 17 / 25

()November 21, 2010 18 / 25

()November 21, 2010 18 / 25

()November 21, 2010 18 / 25

So this is actually the dominance reporting problem: store a dynamic
collection of points so that all (x , y) with x ≥ x0, y ≥ y0 can be reported
quickly. Any type of regions can be reduced to this problem by an affine
tranformation.

()November 21, 2010 18 / 25

There are quite a few classic solution to this problem.

1 range search trees, reporting in O(log2 n + k)

2 priority search trees, reporting in O(log n + k)

(k is the number of reported points)
The structures are usually described as static, but if we know all queries in
advance, it is not difficult to modify them so that points can be
inserted/erased.
But does it really help? In our original problem we had two types of
regions, and we split each type into two subtypes...
Build a separate structure for each type! And remember to ignore all but
the first time the point is reported.
The structure is quite specific here, and the range search tree can be
speed up to O(log n + k). The total complexity is O(n log n) then.

()November 21, 2010 19 / 25

There are quite a few classic solution to this problem.

1 range search trees, reporting in O(log2 n + k)

2 priority search trees, reporting in O(log n + k)

(k is the number of reported points)
The structures are usually described as static, but if we know all queries in
advance, it is not difficult to modify them so that points can be
inserted/erased.
But does it really help? In our original problem we had two types of
regions, and we split each type into two subtypes...
Build a separate structure for each type! And remember to ignore all but
the first time the point is reported.
The structure is quite specific here, and the range search tree can be
speed up to O(log n + k). The total complexity is O(n log n) then.

()November 21, 2010 19 / 25

B - Beasts
RTE WA TLE AC

0 8 1 0

First we should somehow determine the boundary of the lower and the
upper region. The situation is completely symmetric here so lets focus on
the former.

()November 21, 2010 20 / 25

B - Beasts
RTE WA TLE AC

0 8 1 0

First we should somehow determine the boundary of the lower and the
upper region. The situation is completely symmetric here so lets focus on
the former.

()November 21, 2010 20 / 25

The boundary read from left to right consists of segments belonging to
lines y = ax + b with increasing values of a. This suggest that we should
look at how the boundary changes after adding a new line with bigger
value of a.

()November 21, 2010 21 / 25

The boundary read from left to right consists of segments belonging to
lines y = ax + b with increasing values of a. This suggest that we should
look at how the boundary changes after adding a new line with bigger
value of a.

()November 21, 2010 21 / 25

The boundary read from left to right consists of segments belonging to
lines y = ax + b with increasing values of a. This suggest that we should
look at how the boundary changes after adding a new line with bigger
value of a.

()November 21, 2010 21 / 25

The boundary read from left to right consists of segments belonging to
lines y = ax + b with increasing values of a. This suggest that we should
look at how the boundary changes after adding a new line with bigger
value of a.

()November 21, 2010 21 / 25

Consider the lines y = ax + b in order of increasing a. Store the current
boundary on a stack.

1 while the last segment on the stack is completely on the right of the
current y = ax + b, pop it,

2 split the last segment on the stack,

3 push a new segment on the stack.

Total time is O(n log n), and we got the boundary as a sequence of
segments.
(the whole procedure is very similar to computing the convex hull, do you
know why?)

()November 21, 2010 22 / 25

Having the description of both boundaries, we still need to compute their
distance.
If you have a generic two convex polygons distance procedure, you are
good to go already. But for the rest of us mere mortals...
The optimal distance is achieved for two points p, q such that at least one
of them is the endpoints of some segment. We can afford to check all
endpoints one-by-one.
For each endpoint we have to compute its distance to a convex polygon
(quite special convex polygon, actually).

1 This can be using binary search.

2 Or, even better, you can observe that when you move with this
endpoint from left to right, the corresponding best point on the
second boundary moves from left to right as well (because of the way
the bounadries are constructed).

This gives a linear time solution for the second part of the problem.

()November 21, 2010 23 / 25

Having the description of both boundaries, we still need to compute their
distance.
If you have a generic two convex polygons distance procedure, you are
good to go already. But for the rest of us mere mortals...
The optimal distance is achieved for two points p, q such that at least one
of them is the endpoints of some segment. We can afford to check all
endpoints one-by-one.
For each endpoint we have to compute its distance to a convex polygon
(quite special convex polygon, actually).

1 This can be using binary search.

2 Or, even better, you can observe that when you move with this
endpoint from left to right, the corresponding best point on the
second boundary moves from left to right as well (because of the way
the bounadries are constructed).

This gives a linear time solution for the second part of the problem.

()November 21, 2010 23 / 25

Having the description of both boundaries, we still need to compute their
distance.
If you have a generic two convex polygons distance procedure, you are
good to go already. But for the rest of us mere mortals...
The optimal distance is achieved for two points p, q such that at least one
of them is the endpoints of some segment. We can afford to check all
endpoints one-by-one.
For each endpoint we have to compute its distance to a convex polygon
(quite special convex polygon, actually).

1 This can be using binary search.

2 Or, even better, you can observe that when you move with this
endpoint from left to right, the corresponding best point on the
second boundary moves from left to right as well (because of the way
the bounadries are constructed).

This gives a linear time solution for the second part of the problem.

()November 21, 2010 23 / 25

A - Ardenia
RTE WA TLE AC

3 33 9 0

Calculate the (squared) distance between two segments in 3D. Your
answer should be given as a irreducible fraction p

q .
First idea: two nested binary searches. Would work if we need the answer
up to a few decimal places, which is not the case here.
Second idea: be more analytical.
Minimize f (a, b) = Aa2 + Bb2 + Cab + Da + Eb + F over 0 ≤ a, b ≤ 1.
Two cases to consider:

the minimum is achieved for a boundary value of a or b, i.e., 0 or 1.
Check all such possibilities, for each of them we get a univariate
quadratic equation, which is simple to minimize.

a, b ∈ (0, 1). Then the minimum is achieved when ∂f (a,b)
∂a = 0 and

∂f (a,b)
∂b = 0. Solving this gives 2 linear equations in two variables.

()November 21, 2010 24 / 25

A - Ardenia
RTE WA TLE AC

3 33 9 0

Calculate the (squared) distance between two segments in 3D. Your
answer should be given as a irreducible fraction p

q .
First idea: two nested binary searches. Would work if we need the answer
up to a few decimal places, which is not the case here.
Second idea: be more analytical.
Minimize f (a, b) = Aa2 + Bb2 + Cab + Da + Eb + F over 0 ≤ a, b ≤ 1.
Two cases to consider:

the minimum is achieved for a boundary value of a or b, i.e., 0 or 1.
Check all such possibilities, for each of them we get a univariate
quadratic equation, which is simple to minimize.

a, b ∈ (0, 1). Then the minimum is achieved when ∂f (a,b)
∂a = 0 and

∂f (a,b)
∂b = 0. Solving this gives 2 linear equations in two variables.

()November 21, 2010 24 / 25

THE END

()November 21, 2010 25 / 25

