Cartesian tree
Theory and applications

Gleb Evstropov
glebshp@yandex.ru

November 14, 2015

1 Some notations

e u, v, w — some nodes of the binary search tree;

e parent(v) — the parent of some node v in the binary search tree. If v is the root
then parent(v) = NIL;

e left(v) — left child of some node v in the binary search tree. If the left subtree is
empty, then left(v) = NIL;

e right(v) — right child of some node v in the binary search tree. If the right subtree
is empty, then right(v(= NIL;

e key(v) — the value of a node v that affects the tree structure;
e z(v) — another way to denote keys in Cartesian trees. Usually, z(v) = key(v).
e y(v) — some additional value associated with the node v and used to build the tree;

e subtree(v) — the set of all nodes that lie inside the subtree of some node v (v is
also included);

e size(v) — the size of the subtree of some node v;

e 1;(v) — the minimum key in the subtree of the node v, that is:

xl(v) - uEszILrbltirl’ie(v) key(U)

e Same as x;(v) we define x,(v) as the maximum key in the subtree of the node v:

-Tr(U) - uEs{gS‘};e(v) key(u)

e depth(v) is the length of the path from root to v. depth(root) = 0.

e height(v) is the difference between max(depth(u)) and depth(v), where u € subtree(v).



2

Key points and definitions

Greedy algorithm of finding an increasing subsequence: take first element that is
greater than current, "left ladder”. The expected length of the result on a random
permutation is O(logn).

BST stands for binary search tree, that is a binary rooted tree with some keys
associated with every node, and the following two conditions hold:

key(u) < key(v),Vu,v : u € subtree(left(v))

and
key(u) > key(v),Vu,v : u € subtree(right(v))

For any pair of nodes of any binary search tree v and u:
u € subtree(v) if and only if z;(v) < key(u) < z,(v)

For any tree and some keys stored in nodes of that tree we say that heap condition
holds if for any v that is not the root:

key(parent(v)) > key(v)

Binary search tree of size n is balanced if it’s height is O(logn).

Cartesian tree or treap is a balanced binary search tree, where each node is assigned
some random values y(v), which satisfy to the heap condition. Hereafter we will
treat y(v) as a random permutation.

Cartesian tree is uniquely determined by a set of pairs (z;, y;), such that all x; are
pairwise distinct and all y; are pairwise distinct.

Node v is an ancestor of a node u if and only if for every w # v such that
min(key(v), key(u)) < key(w) < max(key(v), key(u)) it’s y is smaller than the
y of v, i.e. y(v) > y(w).

Linear algorithm to build Cartesian tree having a sorted pairs using stack.

The expected depth of an i-th node (in the order of left-right traversal) is

=<2 ) —=0(logn)
-+t il

We can treat a Cartesian tree as an array, if we replace z(v) with it’s relative position
on the tree. The data structure is called Implicit-key Cartesian tree.

Persistent Cartesian tree cannot use fixed random values y(v), instead, two subtrees
are merge with probability proportional to their sizes.



	Some notations
	Key points and definitions

