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Parts of the bipartite graph have sizes m and n, and each vertex
has a degree upper limit. Construct a bipartite graph with maximal
number of edges. Multiple edges are disallowed.
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One possible approach to this problem is to view it as a max-flow
problem.

Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1

Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.

Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

One possible approach to this problem is to view it as a max-flow
problem.
Build a network as follows:

Add edges from source to vertices of left half with capacity mi

Add all edges between left and right half with capacity 1
Add edges from vertices of right half to sink with capacity ni

The answer is indeed the value of max-flow in this network.
Of course, we cannot build it explicitly since network is too large.



A B C D E F G H I J K

A. Rabbit Lunch

Due to Ford-Falkerson theorem, the value of max-flow is equal to
the value of the minimal S − T cut.

Let source’s part of the cut contain a vertices of left half with total
capacity A, and n − b vertices of right half with total capacity B .
Similarly, let sink’s part of the cut contain m − a vertices of left
half with total capacity C , and b vertices of right half with total
capacity D.
Then, capacity of the cut if B + C + a · b.
It is evident that B and C should be as small as possible, thus the
corresponding parts should contain vertices of smallest capacities.
The above reasoning can be considered a proof of the greedy
algorithm which matches the largest vertices of the left part with
the smallest vertices of the right part.
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The problem is now equivalent to the following: we have two sorted
arrays a and b. We have to choose non-negative numbers x and y
such that

x∑
i=1

ai +

y∑
j=1

bj + (m − x) · (n − y)

is minimal.

Suppose x is fixed.
Changing y to y − 1 changes answer by m − x − by . Since b is
sorted, y should be decreased while the answer gets better.
Moreover, if we increase x , optimal y cannot increase. That means
that “two-pointers” approach will work here: increase x , decrease y
while answer gets better.
Together with sorting the arrays, this makes for an
O((n +m) log(n +m)) solution.
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B. Snuke

Given a string, remove exactly k letters “s” so that the resulting
string is lexicographically smallest possible.
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B. Snuke

If there are several “s” letters such that their removal makes the
string smaller, we should remove them going from left to right. If at
some point we removed exactly k letters, we have to stop.

If there are less then k letters s that make our string better, we
have to remove some more letters. Note that at this point each
removal makes string worse, so we have to pick rightmost letters
over others. Thus, go from right to left and remove all letters “s”
until we have removed enough.
This is easily implemented in O(n).
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C. Supermarket

n types of food are sold at the market. Each month, each type is
either present or not. We have ordered all types of food from most
to least favourite, and each month we pick most favourite food
among available types. Find maximal number of food types we can
purchase over 12 months, if we can choose preferences arbitrarily.
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C. Supermarket

Given the preferences, we can find the number of different types we
purchase as follows:

Pick the most favourable food. If it is not sold at all, skip it.
Otherwise, increase answer by 1 and mark all months when it’s
sold as “decided”.
Pick the next favourable food. If it is not sold, or all the
months when it’s sold are already “decided”, then we can’t buy
it and should skip. Otherwise, increase the counter and mark
the months when the current type is sold as “decided”.
Do the same for the next favourable food, and so on.
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C. Supermarket

Denote dS the maximal number of food types that can be bought
for some preference list such that the set of “decided” months
becomes equal to S .

We can compute dS with DP. Clearly, the base case is d∅ = 0.
For every S , iterate over all food types that extend the set of
decided months (that is, types that are sold on still undecided
months). Let S ′ be the resulting set of decided months after
choosing the current food type. Then we try to improve dS ′ with
dS + 1.
Finally, the answer is the maximal value of dS for all S . The total
complexity is O(n2k), where k is the number of months (12 in our
case).
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D. Subsequence

Count the number of pairs of string (s, t) such that:

s consists of a zeros and b ones
t consists of c zeros and d ones
t is a subsequence of s
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D. Subsequence

Checking if a string is a subsequence of another string
Let us decide if t is a substring of s.

Let i be the index of first unmatched symbol of t. Iterate over all
symbols of s, increment i if ti is equal to current sumbol of s.
t is a subsequence of s if at the end of the process index i points
after the last symbol of t.

Denote c symbol different from c (0 = 1, 1 = 0).
If t is a subsequence of s, then s can be uniquely represented as
follows (according to the algorithm above):

t1
∗t1t2

∗t2 . . . tn
∗tn(whatever)

(here c∗ is c repeated any number of times (possibly, zero))
We will call the substring ti

∗ti the i-th block.
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D. Subsequence

Assume that t is fixed.

Let k be the total number of 1’s in the blocks corresponding to
symbols ti = 0, and l be the total number of 0’s in the blocks
corresponding to symbols ti = 1. The number of strings s
corresponding to the numbers k and l is:(k+d−1

d−1
)
(distribute k ones over d blocks)

×
(l+c−1

c−1
)
(distribute l zeros over c blocks)

×
(a−c−k+b−d−l

a−c−k
)
(shuffle all unused symbols arbitrarily)

The number of s — supersequences of t is the sum of these
products over all valid values of k and l .
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D. Subsequence

It is evident that the number of s’s does not depend on t, so we
can simply multiply the answer by

(c+d
c

)
.

The complexity is O(ab).
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E. Tournament

Count the total number of strongly connected components over all
tournaments on n vertices.
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E. Tournament

Fact
The condensation of any tournament is a path.

Let S ,T be any partition of the set of vertices V into two
non-empty parts.
Call S ,T a one-directional cut if all edges between S and T are
directed towards T .

Corollary of the fact
The number of SCC’s of a tournament is the total number of
one-directional cuts plus one.

Thus, the answer is the total number of one-directional cuts over
all graphs, plus the total number of tournaments (2

n(n−1)
2 ).
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E. Tournament

How many one-directional cuts are there in total?

The total number of one-direcational cuts such that |S | = k is(n
k

)
(choose partition into S and T )

×2
k(k−1)

2
+ (n−k)(n−k−1)

2 (edges between S and T are directed towards
T , direct all other edges arbitrarily)

To obtain the answer, sum these products over all k , and add
2

n(n−1)
2 .

The complexity is O(n log n) (to find powers of 2 on each step).
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F. Lake

There are n ports on the border of a circular lake. We can walk
around the lake, or move from one port to another immediately.
Add k new ports in such a way that maximal length of shortest
path between any two points is minimized.
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F. Lake

Let us restate the problem:

We are given a set of segments. We can move along the
segment or instantly jump between any two ends of any
segments.
For k times we can choose any segment and break it into two
parts arbitrarily.
It is evident that the largest distance between two points is
equal to half of the sum of lengths of two longest segments.

So, we have to break segments into parts and minimize the sum of
two largest lengths.
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F. Lake

Let’s take the optimal answer and look at two largest segments, a
and b.

Suppose that a is whole segment from original set.
We assert that a is the smallest segment from the original set
that is greater or equal to b.
Indeed, if there is an original segment a′ such that a > a′ > b,
we can replace a with a′ and cut a the same way we cut a′.
After that, the length of the second longest segment will not
increase, therefore answer wasn’t optimal.
It follows that if we are given s = a+ b, a has to be the
smallest segment not shorter than s/2.
Suppose that a is a proper part of an original segment.
In that case we can make a and b equal (while preseving their
sum) by contracting a and extending all other segments.
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F. Lake

If we want to check whether an answer with a+ b at most x exists,
we can check two options:

Break all segments in such a way that all parts are not greater
than x/2.
Find the shortest segment a not shorter than x/2, than break
all other segments so that all parts are not longer than x − a.

If any of the options produces partition with at most k cuts, then
an answer with a+ b > x exists.
We can now invoke binary search on x to find the answer.
Complexity is O(n log−1 ε).
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G. Medals

n people are participating in a competition. For some pairs of
people we know that one performed better then the other. Count
the number of ways to give gold, silver and bronze medals (that is,
choose the best, the second best and the third best) according to
given information.
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G. Medals

Call a vertex a source if its in-degree is zero.

Define depth d(v) of a vertex v as follows:

Depth of a source is 0.
Depth of a non-source vertex is max(u,v) — edge d(u) + 1.

That is, vertices of depth 1 are dominated only by sources, vertices
of depth 2 are dominated by sources and 1-depth vertices, and so
on.
Clearly, no medal can be given to a vertex with depth 3 and more.
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G. Medals

Several configurations of medals distributions are possible.

All medals are given to sources. The number of such
configurations if s(s − 1)(s − 2), where s is the number of
sources.
Two medals are given to sources v and u, and one to a
1-depth vertex w .
Clearly, w must not be dominated by any vertices other than v
and u. To count such configurations, iterate over all possible
w and handle different cases depending on the number of
sources dominating w .
One medal is given to a source v , and two to 1-depth vertices
u and w .
No sources must dominate u and w besides v . To count these,
iterate over possible v and count k — the number of 1-depth
vertices dominated by v and nothing else. Add k(k − 1) to the
answer.
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1-depth vertex w .
Clearly, w must not be dominated by any vertices other than v
and u. To count such configurations, iterate over all possible
w and handle different cases depending on the number of
sources dominating w .
One medal is given to a source v , and two to 1-depth vertices
u and w .
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G. Medals

Finally, medals can be given to a source v , 1-depth vertex u,
and 2-depth vertex w .

In this case, u is not dominated by vertices other than v , and
w is not dominated by vertices other than v and u.
Each non-source vertex can be a part of at most one such
configuration, so there are many simple ways to count these
efficiently.

All these confiurations can be counted in linear (O(n +m)) time.



A B C D E F G H I J K

G. Medals

Finally, medals can be given to a source v , 1-depth vertex u,
and 2-depth vertex w .
In this case, u is not dominated by vertices other than v , and
w is not dominated by vertices other than v and u.

Each non-source vertex can be a part of at most one such
configuration, so there are many simple ways to count these
efficiently.

All these confiurations can be counted in linear (O(n +m)) time.



A B C D E F G H I J K

G. Medals

Finally, medals can be given to a source v , 1-depth vertex u,
and 2-depth vertex w .
In this case, u is not dominated by vertices other than v , and
w is not dominated by vertices other than v and u.
Each non-source vertex can be a part of at most one such
configuration, so there are many simple ways to count these
efficiently.

All these confiurations can be counted in linear (O(n +m)) time.



A B C D E F G H I J K

G. Medals

Finally, medals can be given to a source v , 1-depth vertex u,
and 2-depth vertex w .
In this case, u is not dominated by vertices other than v , and
w is not dominated by vertices other than v and u.
Each non-source vertex can be a part of at most one such
configuration, so there are many simple ways to count these
efficiently.

All these confiurations can be counted in linear (O(n +m)) time.



A B C D E F G H I J K

H. Snuke Density

Check if c!
a!b! is an integer.
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H. Snuke Density

Some obvious cases:

c < a or c < b — not an integer, since numerator is less than
denominator.

c > a+ b — an integer, since c!
a!b!

...
(a+b

a

)
— the binomial

coefficient, which is an integer.
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H. Snuke Density

For an integer n and a prime p, denote d(n, p) the number of times
n! can be divided by p.

It can be seen that d(n, p) = bnp c+ b
n
p2
c+ . . ..

Using this formula, d(n, p) is calculated straightforwardly in
O(log n/ log p) time.

Observation
c!
a!b! is an integer iff for any prime p d(a, p) + d(b, p) 6 d(c , p)
holds.

Thus, it suffices to check all primes that can possibly fail this
condition.
Since c!

a!b! =
(a+b

a )
(a+b)...(c+1) , a prime p that may fail the condition is a

divisor of a number from [c + 1; a+ b].
However, we have to deal with the case when then segment
[c + 1; a+ b] is large.
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Observation
d(a+ b, 2)− d(a, 2)− d(b, 2) = O(log(a+ b))).

Proof
A fairly well-known number theory exercise: the number of times(a+b

a

)
can be divided by 2 equals the number of times carrying

happens when adding a and b in the binary numeral system.
Clearly, the number of bits is O(log(a+ b)).

Segment [c + 1; a+ b] contains at least a+b−c
2 even numbers. It

follows that if d(a+ b, 2)− d(a, 2)− d(b, 2) < a+b−c
2 , the prime 2

clearly fails the divisiblity condition.
So, is the segment [c + 1; a+ b] is too large, the answer is “no”.
Otherwise, factorize all the numbers from [c + 1; a+ b] and check
their prime divisors.
Complexity is O(

√
c log2 c).
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I. Convex Polygon

Construct a strictly convex polygon on n vertices with non-negative
integer coordinates not exceeding 106, or determine that none
exists.
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I. Convex Polygon

That problem is not easier than constructing the polygon with
maximal possible number of vertices, which we’ll discuss.

“Natural” assumptions
The polygon mostly consists of four monotonous polylines,
each a rotated copy of another.
Consider a copy of the polyline that connects the bottom point
and the rightmost point, and denote (X ,Y ) the vector from
one end of the polyline to another. Then the polyline is chosen
so that to maximize number of points with X + Y 6 106.
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I. Convex Polygon

How to construct a convex polyline with X + Y 6 106?

Let (xi , yi ) be vector corresponding to i-th side, ordering from
beginning of the polyline.
It follows from convexity that xiyi+1 − xi+1yi > 0.
If we have chosen pairs, we can order them by the above
comparison if there are no codirectional vectors.
Together with the requirement of X +Y minimization, we conclude
that xi and yi must be coprime for all sides, and each pair can be
used at most once.
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I. Convex Polygon

How do we generate coprime pairs?

Here’s a brief description of a construction named Stern-Brocot
tree:

Start with two pairs (0, 1) and (1, 0).
For every two consecutive pairs (a, b) and (c , d) write the pair
(a+ c , b + d) between them.
It can be shown that every coprime pair will be generated
exactly once throughout the whole process.

We can implement the process with priority queue so that the pairs
are generated in the order of increasing a+ b, until the total of
a+ b does not exceed 106.
This indeed maximizes the number of vertices in the polygon
formed by four similar polylines.
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WA #6
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I. Convex Polygon

What did we miss?

We cannot add more sides to all four polylines.
However, we can find two vectors (x , y) and (−x ,−y) such that
X + Y +max(x , y) 6 106, and (x , y) is not codirectional to any of
the vectors in the existing polyline.
This is surely an improvement, and quite probably a best solution.
It’s pretty hard to analyse the situation rigorously, but the best
guess is that the optimal way to insert four more vectors would
probably be to extend the polylines, and inserting three more
vectors is hardly optimal since their sum should be zero and that
would be hard to maintain with all the constraints.
And it’s accepted!
If the side of the square is T , we can fit polygon with at most
∼ T 2/3 sides. Therefore, the complexity to generate the polygon is
O(T 2/3 logT ) and can be optimized to O(T 2/3).
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guess is that the optimal way to insert four more vectors would
probably be to extend the polylines, and inserting three more
vectors is hardly optimal since their sum should be zero and that
would be hard to maintain with all the constraints.
And it’s accepted!
If the side of the square is T , we can fit polygon with at most
∼ T 2/3 sides. Therefore, the complexity to generate the polygon is
O(T 2/3 logT ) and can be optimized to O(T 2/3).
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J. Mixed Drinks

We are given a number of points (xi , yi , zi ) in the 3D space. For a
subset S compute (max(xi ),max(yi ),max(zi )). Count the number
of different points obtained this way.
All xi , yi and zi are distinct.
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J. Mixed Drinks

Clearly, every set of one point produces an obtainable
maximum.

How many new maximums we obtain when we consider
two-point sets?
The set is new is no point dominates (is coordinate-wise
greater) the other
That is, the number of new maximums is(n
2

)
− dominating pairs

How many new maximums we obtain when we consider
three-point sets?
The set is new if no point is dominated by another, and no
point is dominated by coordinate-wise maximum of other two
points.
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J. Mixed Drinks

Without further involvement, we mention that it suffices to know
the following things to know the answer:

For each point, the number of points it dominates.
Project all points on a coordinate plane (one of Oxy , Oxz ,
Oyz). For each projection and for each point, the number of
points it dominates in the projection.

We note that the reference solution (by Makoto Soejima) works in
O(n log2 n), takes ∼ 120 lines in C++ and doesn’t use complex
data structures.
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K. Hull Marathon

We can locate n points in the plane, i-th point not farther than ri
from origin. Maximize area of convex hull.
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K. Hull Marathon

Suppose that we have fixed the subset of points lying on the border
of convex hull, as well as their order around the origin.

Obviously, each point has to be located at the maximal distance, ri .
It suffices to choose directions to the points from the origin.
Denote αi the angle between the Ox axis and the vector Opi . Put
α0 = 0 by definition.
Also for convenience put αn = 2π, rn = r0.
Area of the convex hull is then equal to

S(α0, . . . , αn) =
n−1∑
i=0

1

2
ri ri+1 sin(αi+1 − αi )
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K. Hull Marathon

At the global maximum S ′αi
= 0 for all i from 1 to n − 1.

S ′αi
= ri ri+1 cos(αi+1 − αi )− ri−1ri cos(αi − αi−1)

It follows that cos(αi+1 − αi ) =
ri−1

ri+1
cos(αi − αi−1).

Denote βi = αi+1 − αi . By the above formula, we can choose
numbers ti such that cos(βi ) = ti cos(β0).
We have the requirement

∑n−1
i=0 βi = 2π, and the sum of angles is

monotonous over cos(β0). By doing binary search on cos(β0), we
obtain optimal values of βi .
Note that | cos(βi )| cannot exceed 1.
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K. Hull Marathon

It suffices to choose optimal subset of points and order and around
the origin.

Let’s do it straightforwardly, by trying all subsets and all
permutations for every mask.
A very simple optimization of this approach is to permute all
elements except the first, since only the cyclic order matters.
The complexity of this approach O(2n(n − 1)! log−1 ε).
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