
Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem A. Analogous Sets

Input �le: analogous.in

Output �le: analogous.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

For a set A of positive integers let us call A + A a multiset {x + y |x, y ∈ A, x 6= y}.
Consider two sets A and B of the same size n containing positive integers. A and B are called analogous

if A + A and B + B are the same multisets. For example, {1, 4} and {2, 3} are analogous, because
A + A = B + B = {5}, but {1, 2, 5, 6} and {1, 3, 4, 6} are not, because A + A = {3, 6, 7, 7, 8, 11} and
B + B = {4, 5, 7, 7, 9, 10}.
Given n you have to �nd two analogous sets of size n or detect that there are none.

Input

The input �le contains multiple test cases, one on a line.

Each test case is an integer n on a line by itself (2 ≤ n ≤ 1000).

The last test case is followed by a zero that should not be processed.

Output

For each test case print �Yes� if there exist two di�erent analogous sets of size n, or �No� if there are
none. If there exist such sets, the following two lines must contain n positive integers each and describe
the found sets.

If there are several possible pairs of analogous sets for some n, you can output any one.

Examples

analogous.in analogous.out

2

3

0

Yes

1 4

2 3

No

Page 1 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem B. Bayes' Law

Input �le: bayes.in

Output �le: bayes.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Bayes' Law is one of the central theorems of elementary probability theory. It allows to update probability
estimations based on experiments. Consider random events A and B. Let A be a positive outcome of an
experiment and B be a hypothesis. The probability P (A|B) is the probability that A is observed if B is
true. We have P (A|B) = P (A∩B)/P (B). If we observe A indeed, we can estimate the probability of B as
P (B|A) = P (A|B) ·P (B)/P (A). In this problem you are given an experiment and the required con�dence
α, and you must �nd the best hypothesis B, such that P (B|A) ≥ α. Let us get into more details now.

Consider a real-valued random variable ξ distributed uniformly between 0 and x. The experiment consists
of evaluation of a given function f on the value of ξ. The result of the experiment is considered positive if
a ≤ f(ξ) ≤ b. Given f as a piecewise-linear continuous function, a, b, and α, you must �nd such segment
[L,R] that 0 ≤ L < R ≤ x, the probability P (L ≤ ξ ≤ R | a ≤ f(ξ) ≤ b) is at least α, and segment length
R − L is minimal possible.

Input

The input �le contains multiple test cases.

Each test case starts with an integer n � the number of segments in the description of f (1 ≤ n ≤ 100 000).
The following line contains two real numbers: a and b (0 ≤ a < b ≤ 103). The following line contains real
number α (0 < α < 1). Each number is given with at most 3 digits after decimal point, b − a ≥ 10−3.

After that n +1 lines follow, they describe the break points of f 's graph. These lines contain two integers
each: coordinates of points (x0, y0), (x1, y1), . . . , (xn, yn), 0 = x0 < x1 < . . . < xn = x ≤ 106, 0 ≤ yi ≤ 103.
The graph of the function f consists of segments (x0, y0)− (x1, y1), (x1, y1)− (x2, y2), etc. It is guaranteed
that P (a ≤ f(ξ) ≤ b) is at least 10−3.

The last test case is followed by a zero that should not be processed. The sum of n in all test cases in one
input �le is at most 100 000.

Output

For each test case two real numbers: L and R. Your answer may have absolute or relative error of at
most 10−6 in both P (L ≤ ξ ≤ R | a ≤ f(ξ) ≤ b) ≥ α condition and R − L minimization. Tests are
designed in such way that there are no segments [L′, R′] such that R′ − L′ < (R − L)(1 − 10−6) but
P (L′ ≤ ξ ≤ R′ | a ≤ f(ξ) ≤ b) ≥ α − 10−6.

If there are several possible solutions, output any one.

Examples

bayes.in bayes.out

6

3.0 5.0

0.9

0 2

2 5

5 0

7 2

8 1

13 6

15 0

0

1.0 13.813333333333333

Page 2 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem C. Catalian Sequences

Input �le: catalian.in

Output �le: catalian.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Consider a sequence 〈a1, a2, . . . , an〉 of non-negative integers. Accent in a sequence is a pair of adjacent
elements such that the element with greater index has greater value. For example, there are two accents
in sequence 〈0, 2, 3, 1, 0〉: a1 = 0 to a2 = 2 and a2 = 2 to a3 = 3. Let us denote the number of accents
among the �rst k elements of the sequence as Ak. In the given example A1 = 0 A2 = 1, A3 = 2, A4 = 2
and A5 = 2.

A sequence is called accented if a1 = 0 and for each i the inequality ai ≤ Ai−1+1 is satis�ed. For example,
the sequence 〈0, 2, 3, 1, 0〉 is not accented because a2 = 2 and A1 = 0. The sequence 〈0, 1, 0, 2, 3〉 is in turn
accented because A1 = 0, A2 = 1, A3 = 1, A4 = 2.

A sequence 〈a1, a2, . . . , an〉 of non-negative integers is called catalian if the following conditions are
satis�ed:

1. 〈a1, a2, . . . , an〉 is accented;

2. there are no i, j and k such that 1 ≤ i < j < k ≤ n and ak < ai < aj .

For example, the sequence 〈0, 1, 0, 2, 3〉 is catalian, as well as the sequence 〈0, 1, 0, 2, 1〉 is, but the sequence
〈0, 1, 0, 2, 0〉 is not catalian because for i = 2, j = 4, k = 5 we have ak = 0 < ai = 1 < aj = 2.

Given n �nd the number of catalian sequences of length n. For example, if n = 3 there are 5 such
sequences: 〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈0, 1, 2〉.

Input

The input �le contains multiple test cases, one on a line.

Each test case is an integer n on a line by itself (1 ≤ n ≤ 32).

The last test case is followed by a zero that should not be processed.

Output

For each test case output one line containing the case number and the number of catalian sequences of
length n. Adhere to the format of sample output.

Examples

catalian.in catalian.out

1

2

3

4

5

0

Case #1: 1

Case #2: 2

Case #3: 5

Case #4: 14

Case #5: 42

Page 3 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem D. Drunkard's Walk
Input �le: drunkard.in

Output �le: drunkard.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Once Denis heard the following legend.

A drunkard is walking randomly in a directed graph G with n vertices numbered from 1 to n. Each vertex

except vertices n−1 and n has exactly two outgoing edges. The drunkard starts at vertex 1. Each second he

chooses randomly uniformly one of the two outgoing edges and walks along it. He �nishes his walk either

in his home at vertex n − 1, or in the bar at vertex n. The probability that the drunkard ends his walk at

home is exactly p/q.

Now Denis wonders, what the graph G could be.

Help him, �nd such graph G that the story above is true.

Input

The input �le contains multiple test cases, one on a line.

Each line of the input �le contains two integers: p and q (1 ≤ p < q ≤ 100).

The last test case is followed by two zeroes that should not be processed.

There are at most 200 test cases in one input �le.

Output

For each test case output the description of the graph G. The �rst line must contain n � the number of
vertices. The number of vertices must be at most 1000. Each of the following n − 2 lines must describe
edges going out from the corresponding vertex. The i-th of these lines must contain two integers: ui and
vi � the numbers of vertices where the edges from the i-th vertex go to. The graph can have multiple
edges from one vertex to another if needed. The edge can go from a vertex to itself if needed.

Examples

drunkard.in drunkard.out

1 3

0 0

4

2 4

3 1

The graph in the example is shown on the picture below.

4
bar

1
start

2 3
home

Page 4 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem E. Elegant Scheduling

Input �le: elegant.in

Output �le: elegant.out

Time limit: 5 seconds
Memory limit: 512 mebibytes

Eddy is developing schedule for his new project. There are n = 2k jobs to be completed, numbered from
0 to n− 1. Completing a job takes one day, Eddy's worker Eve will use the following 2k days to complete
the jobs. They have agreed on the following payment scheme: if the job j is completed next day after
job i, Eddy must pay di,j dollars to Eve.

Eddy would like to order jobs in a way to pay Eve as few as possible. But he knows that the problem
of �nding the best possible ordering is NP-complete, so he decides to choose the best elegant ordering.
Elegant ordering is composed using the following algorithm. Initially all jobs are ordered by their numbers:
0, 1, 2, . . . , n − 1. In one step the algorithm divides the sequence of jobs a0, a1, . . . , a2i−1 to its �rst half
a0, a1, . . . a2i−1−1 and its second half a2i−1 , . . . a2i−1. Eddy may choose to complete halves in this order,
or swap them. After that, if i > 1, the same algorithm is applied to each of the halves.

For example, ordering 1, 0, 2, 3, 7, 6, 5, 4 is elegant, because it can be obtained from the initial ordering
0, 1, 2, 3, 4, 5, 6, 7 by the following sequence of steps (the considered part of the sequence is in brackets):

• [0, 1, 2, 3, 4, 5, 6, 7]: do not swap halves

• [0, 1, 2, 3], 4, 5, 6, 7: do not swap halves

• [0, 1], 2, 3, 4, 5, 6, 7: swap halves to get 1, 0, 2, 3, 4, 5, 6, 7
• 1, 0, [2, 3], 4, 5, 6, 7: do not swap halves

• 1, 0, 2, 3, [4, 5, 6, 7]: swap halves to get 1, 0, 2, 3, 6, 7, 4, 5
• 1, 0, 2, 3, [6, 7], 4, 5: swap halves to get 1, 0, 2, 3, 7, 6, 4, 5
• 1, 0, 2, 3, 7, 6, [4, 5]: swap halves to get 1, 0, 2, 3, 7, 6, 5, 4

However, the ordering 1, 2, 0, 3, 7, 6, 5, 4 is not elegant since it cannot be obtained from the initial ordering
by these rules.

Given n and a way to generate di,j �nd the minimal possible sum Eddy can pay to Eve and the order the
jobs must be completed.

Input

The input �le contains multiple test cases.

The �rst line of each test case contains an integer n (2 ≤ n ≤ 4096, n is power of 2). The following line
contains a, b, c and m (0 ≤ a, b, c ≤ 105, 2 ≤ m ≤ 105). You can calculate values of di,j for i and j from 0
to n− 1 using the following formula: di,j = (ai + bj + c(i ⊕ j)) mod m where x⊕ y is bitwise exclusive or
of x and y (for example, 13 ⊕ 7 = 11012 ⊕ 01112 = 10102 = 10).

The last test case is followed by a zero that should not be processed. The sum of n in all test cases doesn't
exceed 4096.

Output

For each test case print two lines. The �rst line must contain the minimal total sum Eddy can pay to
Eve. The second line must contain the order the jobs should be completed. If there are several solutions,
output any one.

Examples

elegant.in elegant.out

8

6 5 7 10

0

27

5 4 7 6 1 0 2 3

Page 5 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem F. Flights

Input �le: flights.in

Output �le: flights.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Farcian Federation is a big country and its n cities are located at great distance from each other. Therefore
the main way to move between cities there is making a �ight by a plane. There are m bidirectional �ights
connecting di�erent cities. For each city there is a �ight connecting it with Cowmos, the capital of Farcian
Federation, and there can be some other �ights.

The new minister of transportation of Farcian Federation is planning to make several reforms to the
Farcian aviation to counter terrorism. The �rst reform he is planning is changing �ight numbers.

After the reform each �ight must have a number from 1 to m. Di�erent �ights must have di�erent numbers.
For any two di�erent cities u and v the sum of numbers of �ights connecting u to other cities must be
di�erent from the sum of numbers of �ights connecting v to other cities.

Help the minister to choose new numbers for the �ights so that the condition above was satis�ed.

Input

The input �le contains multiple test cases.

The �rst line of each test case contains n and m � the number of cities and the number of �ights,
respectively (3 ≤ n ≤ 1000, n− 1 ≤ m ≤ 100 000). Let the cities of the country be numbered from 1 to n
and let the capital have number 1. The following m lines describe �ights. Each �ight is described by two
integers ui and vi � the numbers of the cities it connects. No two cities are connected by more than one
�ight. No city is connected by a �ight to itself. Each city is connected by a �ight to city 1.

The last test case is followed by two zeroes that should not be processed.

The sum of n in all test cases in one �le doesn't exceed 100 000. The sum of m in all test cases in one �le
doesn't exceed 100 000.

Output

Print answers to all test cases.

If it is possible to give numbers to �ights so that the described condition is satis�ed, output �Yes� as the
�rst line of output. In the other case output �No�.

If the numbering is possible, the following line must contain m integers: for each �ight in order they are
given in the input �le print its new number. If there are several solutions, output any one.

Examples

flights.in flights.out

5 8

1 5

1 3

1 4

1 2

2 3

3 4

4 5

5 2

0 0

Yes

1 3 2 4 5 6 7 8

In the example the sums of �ight numbers in the cities are 10, 17, 14, 15, and 16, respectively.

Page 6 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem G. Genome of English Literature

Input �le: genome.in

Output �le: genome.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Genome assembly is an important problem in bioinformatics. Genome is a very long string, so reading it
completely from DNA is a di�cult task. To extract genome information so called sequencing machines

are used. They take DNA and split it to small pieces. After that these pieces are scanned to get so called
pair reads � pre�x and su�x of each piece of some length k are recorded. Some characters in reads can
be scanned incorrectly, they correspond to read errors. Usually several copies of the same genome are
sequenced, thus providing multiple cover of the genome. Genome assembly problem is then to restore
genome from these reads.

In this problem we would attempt to develop genome assembly algorithms and apply them to classic
English literature. We will ignore pairness of reads and will not introduce any errors, so your problem will
be simpler than that of bioinformatic scientists.

Judges took 12 classic English and American literature texts as test data:

• William Shakespear � �Romeo and Juliet� (sample test)

• Daniel Defoe � �Robinson Crusoe�

• Jonathan Swift � �Gulliver's Travels�

• Jack London � �White Fang�

• The Works Of Edgar Allen Poe

• Matthew Lewis � �The Monk�

• Arthur Conan Doyle � �The Hound of the Baskervilles�

• Charles Dickens � �Great Expectations�

• H.G. Wells � �The War of the Worlds�

• Herman Melville � �Moby Dick or The Whale�

• Mark Twain � �The Adventures of Tom Sawyer�

• Horace Walpole � �The Castle of Otranto�

Each of these texts was downloaded from Project Guttenberg library as plain text. First it was converted
to a sequence of characters with ASCII codes from 32 to 126. All characters with ASCII code less then
32 (space) were replaced with space and all characters with ASCII code greater than 126 were removed.
All sequences of two or more consecutive spaces were replaced with one space. All characters except the
�rst 50 000 were removed. Let us call the resulting string t.

After that 20 000 times random integer i from 1 to 49 951 was uniformly generated and 50 characters at
positions t[i . . . i + 49] were printed to the input �le as one line. Therefore input �le contains 20 000 lines
of 50 characters each, they represent some random subwords of length 50 of t.

Your task is to cover a great part of t with sca�olds. For the purpose of this problem sca�old is a string of
length at least 500 that is a substring of t. You have to print one or more words to the output �le with the
total length of at most 50 000. Words that are not substrings of t will be ignored. For words that are long
enough substrings of t all occurrences will be found. Positions in t that are covered by these occurrences
will be marked. Your output for a test will be accepted if at least half of positions of t are marked.

Page 7 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Input

The input �le contains 20 000 strings of length 50. Each string is a random substring of a text t of length
50 000 obtained as described in the problem statement.

Output

Output one or more words that you think are substrings of t of length at least 500. Words must have
total length of at most 50 000.

Your output will be accepted if at least half of positions in t are covered by occurrences of words you
print.

Examples

You can download sample input/output from http://forest.acm.petrsu.ru

Page 8 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem H. Hide-and-Seek (Division 1 Only!)

Input �le: hide.in

Output �le: hide.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Little Henry likes to play hide-and-seek with his friends. But Henry doesn't like conventional rules of the
game, so he has invented his own rules.

The boys play in Henry's room which has a form of a simple polygon with n corners numbered from 1
to n in counterclockwise order. Let us say that the point A of the room is visible from the point B if the
segment AB is completely inside the room (it is allowed to touch room walls or corners).

The room has such form that the following conditions are satis�ed:

• the �rst corner is convex : that is, the angle between the two walls adjacent to the �rst corner is less
than 180◦ when measured inside the room;

• all other corners of the room are visible from the �rst corner.

Henry stands in the �rst corner of the room and his friends then choose other corners of the room in such
way that none of them can see each other and hide there. After that friends try to guess who have chosen
which corner, and seeing them all Henry has fun.

The picture below shows the room from the �rst example with Henry and three friends playing.

Henry

Friends

Henry would like to play this funny game with as many friends as possible. Help him to �nd out how
many friends he can invite to play so that they could choose corners to hide in.

Input

The input �le contains multiple test cases.

The �rst line of each test case contains n � the number of corners of Henry's room (3 ≤ n ≤ 500).
The following n lines contain coordinates of room corners, described in counterclockwise order. Each line
contains two integers xi and yi (−105 ≤ xi, yi ≤ 105).

The last test case is followed by a zero that should not be processed.

The sum of n in all test cases in one �le doesn't exceed 500.

Output

Print answers to all test cases.

For each test case �rst print k � the maximal number of friends Henry can invite. After that print k
integers: numbers of corners the friends can choose to hide. The corners must not be visible from each
other. Corners are numbered from 1 to n in order they are given in the input �le. Corner 1 must not be
chosen because Henry is there.

If there are several solutions, print any one.

Page 9 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Examples

hide.in hide.out

9

0 0

4 0

4 1

3 1

3 2

2 3

1 3

1 4

0 4

4

0 0

1 0

1 1

0 1

0

3

3 5 8

1

2

Page 10 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem I. Informatics Final Projects (Division 1 Only!)

Input �le: informatics.in

Output �le: informatics.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Ivan is the head of Informatics Department in Innopolice Institute for Investigations and Innovation. Now
it's time for the students of the department to select their �nal project, and Ivan is going to distribute
projects among students.

There are n students in the department, m available projects and t teachers going to supervise the projects.
Each student has chosen one or several projects that he would agree to work on and ordered them in a
list by his preference. The �rst project in the list is the project students would to work on most of all,
the second project is a bit worse, but still acceptable, and so on. Projects not on the student's list should
not be assigned to him. Each project is on the list of at least one student.

Each teacher has chosen one or more projects he is ready to supervise. Each project was chosen by exactly
one teacher. There are also capacity limitations: at most pi students are allowed to work on the i-th project
and the j-th teacher is able to supervise at most tj students. After choosing projects each teacher ordered
all students that agree to take at least one of the projects he would supervise in a list by his preference.
The most preferred student is the �rst one on the list, and so on.

Now Ivan has a hard problem of choosing projects assignment for students. He calls an assignment of
students to projects good if the following conditions are satis�ed:

• Each student is assigned to a project on his preference list, or assigned to no project.

• For each i the i-th project is assigned to at most pi students.

• For each j the j-th teacher has at most tj students assigned to projects he supervises.

• There is no pair student s � project x, such that s is not assigned to x and if we assign s to x, it
would make the assignment better.

We say that assigning student s to project x makes assignment A better if the following conditions are
satis�ed:

• Student s is not assigned to any project in A, or is assigned to a project that goes after x in his
preference list.

• The project x has less then px students assigned to it, or the teacher that supervises x has s on his
preference list before at least one of the students that are assigned to x in A.

• The teacher u who supervises the project x has less then tu students assigned to all his projects,
or he has s on his preference list before at least one of the students that are assigned to one of his
projects in A.

To start with Ivan would like to �nd any good assignment of students to projects. Help him to �nd it.

Input

The input �le contains multiple test cases.

Each test case starts with three integers n, m and t (1 ≤ n ≤ 100, 1 ≤ t ≤ m ≤ 100).

The following n lines describe students. The i-th of these lines starts with ki � the number of projects in
the i-th student's preference list, followed by ki distinct integers from 1 to m � the list itself, from the
most preferrable project to the least preferrable but still acceptable.

Page 11 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

The line with project capacities p1, p2, . . . , pm follows (1 ≤ pi ≤ n).

After that t teacher descriptions follow. Each teacher description consists of three lines. The �rst of
these lines contains one integer tj � the maximal number of students the teacher accepts to supervise
(1 ≤ tj ≤ n). The second line contains lj � the number of students on the teacher's preference list
followed by the list itself � lj distinct integers from 1 to n, from the most preferrable student to the
least preferrable. The third line starts with zj � the number of projects the teacher is going to supervise
followed by the list of these projects (1 ≤ zj ≤ m).

Each project is supervised by exactly one teacher. Each teacher lists exactly those students in his preference
list that accept to take at least one of his projects.

The last test case is followed by three zeroes that should not be processed.

The total number of students in all test cases in one input �le doesn't exceed 1000. The total number of
projects in all test cases in one input �le doesn't exceed 1000. The total number of teachers in all test
cases in one input �le doesn't exceed 1000.

Output

Print answers to all test cases.

For each test case print one line with n integers: any good assignment of projects to students. For each
student print the number of the project it must be assigned to, or 0 if the student should not be assigned
to any project.

If there are several solutions, print any one. It can be proven that at least one good assignment always
exists.

Examples

informatics.in informatics.out

7 8 3

2 1 7

6 1 2 3 4 5 6

3 2 1 4

1 2

4 1 2 3 4

5 2 3 4 5 6

3 5 3 8

2 1 1 1 1 1 1 1

3

7 7 4 1 3 2 5 6

3 1 2 3

2

5 3 2 6 7 5

3 4 5 6

2

2 1 7

2 7 8

0 0 0

1 5 4 2 0 0 3

Page 12 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem J. Japanese Origami (Division 1 Only!)

Input �le: japanese.in

Output �le: japanese.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Jeremy visits Japanese Origami club after school. His study of origami art has just started, so the �rst
task given by his teacher is to fold the strip with creases so that all folds were along the creases and
matched their types.

Consider a paper strip. There are two ways to fold it which creates two possible types of crease. The
picture on the left shows mountain crease which is created when the segment of the strip on the right is
placed under the segment on the left. The picture on the right shows valley crease which is created when
the segment of the strip on the right is placed above the segment on the left.

Mountain crease Valley crease

The paper strip was folded several times to create some creases. Each fold could use some of the layers,
not necessarily all or only one. Segments of the strip could be bent or curved during folds, but the paper
was not torn and after all folds it was compeletely �at, folded at all creases and only there.

You are given the description of the strip after complete folding and then unfolding: the sequence of
segment lengths between creases and crease types. You must detect whether it was possible to fold the
strip in such a way and if it was possible how the folded strip could possibly look. You must assume that
the strip is in�nitely thin and creases are in�nitely small.

Input

The input �le contains multiple test cases.

The �rst line of each test case contains n � the number of creases on the paper strip (1 ≤ n ≤ 500).
The following line contains 2n + 1 tokens: l0, c1, l1, c2, l3, . . . , cn, ln. Here li are integers, 1 ≤ li ≤ 105, l0
is distance from the strip endpoint to the �rst crease, l1 is the distance between the �rst and the second
crease, etc, ci describe corresponding crease types and are either `M' or `V' for mountain and valley-type
creases, respectively. Creases are described from left to right.

The sum of n in all test cases in one �le doesn't exceed 5 000.

Output

Print answers to all test cases.

The �rst line of the answer must be either �Yes� if it is possible to fold the strip so that all creases were
correct, or �No� if it is impossible.

If it is possible to fold the strip, the following line must contain n+1 numbers and describe layer structure
of the folded strip. You must assign distinct integers from 1 to n + 1 to all segments of the strip from the
input so that the following condition was satis�ed. Let us position the folded strip along the line so that
the �rst desribed segment (with length l0) extends to the right from the endpoint of the strip. For each
two segments X and Y if at some point there are both segments X and Y , and X is is above Y , then X
must be assigned smaller number than Y .

If there are several solutions, print any one.

Page 13 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Examples

japanese.in

2

3 M 4 M 3

2

4 M 3 M 4

2

4 M 3 V 4

11

7 M 4 M 3 V 4 V 4 M 4 V 5 V 4 M 7 V 7 V 7 M 8

0

japanese.out

Yes

2 3 1

No

Yes

1 2 3

Yes

3 6 5 4 8 9 12 11 10 1 2 7

Notes

The picture below shows how the strip from the �rst example can be folded. The top picture shows the
strip with creases, the bottom picture shows the folded strip right before it is made completely �at.

The strip from the second example cannot be folded �at to create such creases.

The picture below shows how the strip from the third example can be folded. The top picture shows the
strip with creases, the bottom picture shows the folded strip right before it is made completely �at.

Finally, the picture below shows schematically one way to fold the strip from the fourth example (there
are also many other ways). To make clear view it shows some distance between layers, actually layers are
in�nitely thin and there is no distance between them. Creases are also shown as having some non-zero
size, actually they are in�nitly small.

Page 14 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem K. Kabbalah for Two (Division 1 Only!)

Input �le: kabbalah.in

Output �le: kabbalah.out

Time limit: 5 seconds
Memory limit: 512 mebibytes

Kai and Kevin are kabbalists. However, they don't like traditional kabbalah with its pentagrams, etc.
They have developed their own version of kabbalah that has its rituals centered around circles.

Now they are preparing a place for their kabbalistic rituals. They are going to have rituals at the backyard
of Kevin's grandmother's house. The backyard has a form of a convex polygon with n vertices. Friends
need to place two circular mats to the yard for their rituals. The mats must �t completely into the yard
without overlapping. Of course none of the friends would agree to have a smaller mat, so their radii must
be equal to each other.

To have as powerful rituals as possible, Kai and Kevin would like to have as big mats as possible. Help
them to �nd out what maximal radius of the mats could be.

Input

The input �le contains multiple test cases.

The �rst line of each test case contains n � the number of vertices of the backyard polygon (3 ≤ n ≤ 200).

The following n lines describe vertices of the polygon in counterclockwise order, each vertex is described
by its integer coordinates xi and yi (−104 ≤ xi, yi ≤ 104). The given polygon is convex, no three vertices
are on the same line.

The sum of n in all test cases in one �le doesn't exceed 200.

Output

For each test case �rst output one �oating point number � the maximal possible radius of two non-
overlapping circular mats of the same size that can be put to the backyard. The following two lines must
contain two �oating point numbers each � coordinates of centers of mats.

Your answer must have absolute or relative error of at most 10−6.

If there are several optimal solutions, output any one.

Examples

kabbalah.in kabbalah.out Notes

4

0 0

10 0

10 10

0 10

0

2.9289321881345248

2.9289321881345248 2.9289321881345248

7.0710678118654752 7.0710678118654752

Page 15 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem L. Legendary Boomerang Competition (Division 2
Only)

Input �le: legendary.in

Output �le: legendary.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

In the Legendary Boomerang Competition, a competitor can throw a boomerang to any location, after
which it will return to him in a straight line and knock out every target in its path. The initial throw is
harmless, as the sport boomerang hits the targets only on the return path. Given the locations of each
target in the room relative to competitor, determine the minimum number of boomerangs he will have to
hit each target. Note that competitor must catch the boomerang once it returns, as letting it continue its
�ight would be penalized by immediate disquali�cation.

Input

The �rst line of the input �le will contain a single positive integer, T , the number of testcases in the
playing card factory (). A single test case will begin with a single positive integer, n (1 ≤ n ≤ 100),
on a line by itself, representing the number of targets. Following this will be n line s in the format x y
(−1000 ≤ x, y ≤ 1000, x and y will never both be zero), representing the x and y coordinates of a target
relative to the competitor.

Output

If competitor will need more than one boomerang shoot to hit all targets, output �X shoots!�, where x
is the smallest number of shoots he can use. If competitor can hit all targets with a single boomerang,
instead output �Great! n targets with one shot!�, where n is the number of targets.

Example

legendary.in legendary.out

3

4

1 1

2 2

1 0

5 0

3

1 1

-3 -3

8 -4

4

-1 1

-7 7

-49 49

-343 343

2 shoots!

3 shoots!

Great! 4 targets with one shot!

Page 16 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem M. Monkey and the Broken Typewriter (Division 2
Only!)

Input �le: monkey.in

Output �le: monkey.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

Well trained monkey is trying to print some words from dictionary using broken typewriter. Given a
dictionary of words and the text, printed by monkey, output a list of possible words the monkey was
possibly trying to type. Remember that broken typewriter tend to drag out each letter of a word, that
even well trained keyboard can type letters in the word in any order.

So, two words are equivalent if they have the same number of maximal runs of each letter. A run is a
sequence of consecutive identical characters in a word. A maximal run is simply a run whose adjacent
characters di�er from its contents.

For example, word �CAREER� is composed of 5 maximal runs (�C�, �A�, �R�, �EE�, �R�).
�AAARRRCCCCCEEEERRR� also breaks into 5 maximal runs (�AAA�, �RRR�, �CCCCC�, �EEEE�, �RRR�). Since
both words have an equal number of runs of each letter (one `A', one `C', one `E', 2 `R and 0 for all other
letters), they are a match.

Input

Input �le will begin with a single positive integer, t, the number of test cases (1 ≤ t ≤ 15). A testcase
begins with a line containing a single positive integer, d (d ≤ 1000), the size of the dictionary, which
is in turn followed by d distinct words, each on its own line. A word consists of anywhere from 1 to 30
uppercase alphabetic characters. Following the dictionary is a line containing a single positive integer, q
(q ≤ 100), the number of texts, typed by monkey.

Following this are q lines, each containing a single text. A text consists of anywhere from 1 to 100 uppercase
alphabetic characters.

Output

For each text in this scenario, if it could not be unscrambled using the dictionary print �No matches

found.� Otherwise, print �Did you mean:� on its own line, followed by a list of possible matchings sorted
in alphabetical order, each followed by a single `?'. Print each matching on its own line and in upper case.

Examples

monkey.in monkey.out

1

8

CAREER

CARER

DEER

DREER

RACE

RACECAR

RACER

RED

3

AAAARRRCCCCEEEERRRR

PSYCHOLINGUISTICS

DER

Did you mean:

CAREER?

CARER?

RACER?

No matches found.

Did you mean:

DEER?

RED?

Page 17 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem N. Need For Souvenirs (Division 2 Only!)

Input �le: nfs.in

Output �le: nfs.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

On the �nal of some popular programming contest a line of N contestants forms to receive souvenirs.
Sponsor has Y di�erent types of souvenirs and exactly B souvenirs of each type. The �rst contestant in
line receives a souvenir of the �rst type, the second person receives a souvenir of the second type, and so
on.

When the sponsors give out a souvenir of the last type, they start again with the �rst type. If they reach
the end of the line, they begin again with the �rst person in line, being careful to keep track of which
type they had just given out. This process continues until there are no more souvenirs.

Knowing the single type of souvenir S that you like most, you want to �gure out where in line you should
stand in order to obtain the second-most souvenirs of that type. After all, it would look suspicious if you
were to always receive the most. Although if there are multiple positions in line which receive the most of
that type, then you're okay with receiving the most, and of those positions you'd like the one closest to
the end of the line since it's easier to get. Same for the case of multiple positions receiving second-most.

Input

The �rst line is the number T of testcases (1 ≤ T ≤ 15). Each testcase a single line containing the integers
N , Y , B, and S. Each integer is at least 1 and at most 100. In addition, N ≥ 2 and S ≤ Y .

Output

For each testcase output the position in line at which you should stand.

Example

nfs.in nfs.out

2

4 6 3 5

4 3 6 1

3

4

Page 18 of 19

Andrew Stankevich Contest 45, Northern Grand Prix

Izhevsk Mirror of Petrozavodsk Winter Training Camp, February 9, 2014

Problem O. Operation X (Division 2 Only!)

Input �le: operationx.in

Output �le: operationx.out

Time limit: 2 seconds
Memory limit: 512 mebibytes

The security agency have a keen interest in tracking meta-data of phone calls in order to build a network
of who seems to be friends with whom. In fact, they claim that the content of phone calls has not been
spied upon, and only the meta-data (who called whom when and for how long) is being logged. The idea
is that calling patterns will reveal social connections.

In this question, you will be given a network of who is friends (or associated) with whom, and the identity
of one suspicious person � mr. X. Your task is to output all friends of that person in the network,
presumably for further investigation.

Input

The �rst line is the number T of input data sets, followed by the T data sets (1 ≤ T ≤ 20), each of the
following form: The �rst line contains two integers n, m, separated by a space. 1 ≤ n ≤ 100 is the number
of people in your network. 0 ≤ m ≤ 104 is the number of friendships among pairs of people. Next come m
lines, each containing two distinct integers between 1 and n, describing a connection between those two
people.

Finally, on one more line, is a number s, 1 ≤ s ≤ n, the identity of mr. X.

Output

For each data set, output on one line all the direct friends of person s in the network, sorted in increasing
order, separated by a space. (No person is friends with himself/herself, and we are not interested in
friends-of-friends etc). If list is empty, print empty string instead.

Example

operationx.in operationx.out

2

3 2

2 3

3 2

1

5 5

1 2

4 1

2 4

1 4

3 5

1

2 4

Page 19 of 19

