
Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem A. CosmoCraft
Input �le: cosmo.in

Output �le: cosmo.out

Time limit: 3 seconds

Memory limit: 256 mebibytes

In the two-player game CosmoCraft you manage an economy in the hopes of producing an army capable of

defeating your opponent. You manage the construction of workers, production facilities, and army units;

the game revolves around balancing the resources you allocate to each. The game progresses in turns.

• Workers give you income at the rate of 1 dollar per turn.

• Production facilities let you produce either an army unit or a worker for the cost of 1 dollar. (only

1 army unit or worker can be produced per turn per facility)

• It costs 1 dollar to create a production facility.

• Your army, of course, lets you �ght against your opponent.

You start o� with n workers and k production facilities. The game progresses in turns � at each turn, you

can spend the income you get from your workers on a mixture of workers, army, and creating production

facilities. Workers produced this round do not give you income until the next round; likewise, production

facilities do not become active until the next round. Any unspent income from the current round carries

over to the next.

At the end of a round, you can take the total army you've produced and attack your opponent; if you have

strictly more units than your opponent, the opponent loses immediately, and you retain the di�erence of

the army sizes. Otherwise, your army is crushed and your opponent is left with the di�erence of the army

sizes. (it would be wise for him to counter-attack after this, but you don't lose immediately at least). The

game ends after t turns, at which point both players will usually attack with the larger army reigning

victorious.

You're playing against your friend, and since you've played against him so many times you know exactly

what he's going to spend his money on at every turn, and exactly when he's going to attack. Knowing

this, you've decided that the best strategy is to play defensively � you just want to survive every attack,

and amass as large an army in the meantime so you can counterattack (and hopefully win) at the end of

the game.

What's the largest army you can have at the end of the game, given that you must survive all your friend's

attacks?

Input

There will be several (50 or less) test cases in the input. Each test case will begin with a line with three

integers: n, k and t, where n (1 ≤ n ≤ 100) is the number of workers you start with, k (1 ≤ k ≤ 100) is
the number of production facilities you have at the start, and t (1 ≤ t ≤ 10, 000) is the number of turns.
On the next line will be t− 1 integers, ai (0 ≤ ai ≤ 263 − 1), separated by single spaces. The i-th integer

indicates the strength of the attack (that is, the number of army units your opponent is using in that

attack) on turn i. The input will end with a line with three zeroes.

Output

For each test case output a single integer indicating the maximum number of armies you could have at

the end of the game. Output −1 if it is impossible to survive. Output each integer on its own line, with no

Page 1 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

spaces, and do not print any blank lines between answers. While it is possible for some inputs to generate

unreasonably large answers, all judge inputs yield answers which will �t in a signed 64-bit integer.

Example

cosmo.in cosmo.out

8 4 6

22 6 10 14 0

4 3 3

0 0

6 9 7

0 0 11 0 7 0

0 0 0

-1

11

101

Page 2 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem B. Covered Walkway

Input �le: covered.in

Output �le: covered.out

Time limit: 30 seconds

Memory limit: 256 Mebibytes

Your university wants to build a new walkway, and they want at least part of it to be covered. There are

certain points which must be covered. It doesn't matter if other points along the walkway are covered or

not.

The building contractor has an interesting pricing scheme. To cover the walkway from a point at x to a

point at y, they will charge c + (x − y)2, where c is a constant. Note that it is possible for x = y. If so,
then the contractor would simply charge c. Given the points along the walkway and the constant c, what
is the minimum cost to cover the walkway?

Input

There will be several (15 or less) test cases in the input. Each test case will begin with a line with two

integers, n (1 ≤ n ≤ 106) and c (1 ≤ c ≤ 109), where n is the number of points which must be covered,

and c is the contractor's constant. Each of the following n lines will contain a single integer, representing

a point along the walkway that must be covered. The points will be in order, from smallest to largest. All

of the points will be in the range from 1 to 109, inclusive. The input will end with a line with two zeroes.

Output

For each test case, output a single integer, representing the minimum cost to cover all of the speci�ed

points. Output each integer on its own line, with no spaces, and do not print any blank lines between

answers. All possible inputs yield answers which will �t in a signed 64-bit integer.

Example

covered.in covered.out

10 5000

1

23

45

67

101

124

560

789

990

1019

0 0

30726

Page 3 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem C. Double Dealing

Input �le: doubledealing.in

Output �le: doubledealing.out

Time limit: 25 seconds

Memory limit: 256 mebibytes

Take a deck of n unique cards. Deal the entire deck out to k players in the usual way: the top card to

player 1, the next to player 2, the k-th to player k, the k + 1-st to player 1, and so on. Then pick up the

cards � place player 1's cards on top, then player 2, and so on, so that player k's cards are on the bottom.

Each player's cards are in reverse order � the last card that they were dealt is on the top, and the �rst

on the bottom.

How many times, including the �rst, must this process be repeated before the deck is back in its original

order?

Input

There will be multiple pairwise distinct test cases in the input. Each case will consist of a single line with

two integers, n and k (1 ≤ n ≤ 800, 1 ≤ k ≤ 800). The input will end with a line with two zeroes.

Output

For each test case in the input, print a single integer, indicating the number of deals required to return

the deck to its original order. Output each integer on its own line, with no extra spaces, and no blank

lines between answers. All possible inputs yield answers which will �t in a signed 64-bit integer.

Example

doubledealing.in doubledealing.out

1 3

10 3

52 4

0 0

1

4

13

Page 4 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem D. The End of the World
Input �le: endofworld.in

Output �le: endofworld.out

Time limit: 2 seconds

Memory limit: 256 mebibytes

Legend says that there is a group of monks who are solving a large Towers of Hanoi puzzle. The Towers

of Hanoi is a well-known puzzle, consisting of three pegs, with a stack of disks, each a di�erent size. At

the start, all of the disks are stacked on one of the pegs, and ordered from largest (on the bottom) to

smallest (on the top). The object is to move this stack of disks to another peg, subject to two rules: 1)

you can only move one disk at a time, and 2) you cannot move a disk onto a peg if that peg already has

a smaller disk on it.

The monks believe that when they �nish, the world will end. Suppose you know how far they've gotten.

Assuming that the monks are pursuing the most e�cient solution, how much time does the world have

left?

Input

There will be several (2500 or less) test cases in the input. Each test case will consist of a string of length

1 to 63, on a single line. This string will contain only (capital) A's, B's and C's. The length of the string

indicates the number of disks, and each character indicates the position of one disk. The �rst character

tells the position of the smallest disk, the second character tells the position of the second smallest disk,

and so on, until the last character, which tells the position of the largest disk. The character will be A,

B or C, indicating which peg the disk is currently on. You may assume that the monks overall goal is to

move the disks from peg A to peg B, and that the input represents a legitimate position in the optimal

solution. The input will end with a line with a single capital X.

Output

For each test case, print a single number on its own line indicating the number of moves remaining until

the given Towers of Hanoi problem is solved. Output no extra spaces, and do not separate answers with

blank lines. All possible inputs yield answers which will �t in a signed 64-bit integer.

Example

endofworld.in endofworld.out

AAA

BBB

X

7

0

Page 5 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem E. Estimation
Input �le: estimate.in

Output �le: estimate.out

Time limit: 16 seconds

Memory limit: 256 mebibytes

�There are too many numbers here!� your boss bellows. �How am I supposed to make sense of all of this?

Pare it down! Estimate!�

You are disappointed. It took a lot of work to generate those numbers. But, you'll do what your boss asks.

You decide to estimate in the following way: You have an array A of numbers. You will partition it into

k contiguous sections, which won't necessarily be of the same size. Then, you'll use a single number to

estimate an entire section. In other words, for your array A of size n, you want to create another array B
of size n, which has k contiguous sections. If i and j are in the same section, then B[i] = B[j]. You want

to minimize the error, expressed as the sum of the absolute values of the di�erences (
∑
|A[i]−B[i]|).

Input

There will be several (25 or less) test cases in the input. Each test case will begin with two integers on a

line, n (1 ≤ n ≤ 2, 000) and k (1 ≤ k ≤ 25, k ≤ n), where n is the size of the array, and k is the number

of contiguous sections to use in estimation. The array A will be on the next n lines, one integer per line.

Each integer element of A will be in the range from −10, 000 to 10, 000, inclusive. The input will end with

a line with two zeroes.

Output

For each test case, output a single integer on its own line, which is the minimum error you can achieve.

Output no extra spaces, and do not separate answers with blank lines. All possible inputs yield answers

which will �t in a signed 64-bit integer.

Example

estimate.in estimate.out

7 2

6

5

4

3

2

1

7

0 0

9

Page 6 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem F. Juggler

Input �le: juggler.in

Output �le: juggler.out

Time limit: 4 seconds

Memory limit: 256 mebibytes

As part of my magical juggling act, I am currently juggling a number of objects in a circular path with

one hand. However, as my rather elaborate act ends, I wish to drop all of the objects in a speci�c order,

in a minimal amount of time. On each move, I can either rotate all of the objects counterclockwise by

one, clockwise by one, or drop the object currently in my hand. If I drop the object currently in my hand,

the next object (clockwise) will fall into my hand. What's the minimum number of moves it takes to drop

all of the balls I'm juggling?

Input

There will be several (30 or less) test cases in the input. Each test case begins with an integer n,
(1 ≤ n ≤ 105) on its own line, indicating the total number of balls begin juggled. Each of the next

n lines consists of a single integer, ki (1 ≤ ki ≤ n), which describes a single ball: i is the position of the

ball starting clockwise from the juggler's hand, and ki is the order in which the ball should be dropped.

The set of numbers k1, k2, . . . , kn is guaranteed to be a permutation of the numbers 1 . . . n. The input
will terminate with a line containing a single 0.

Output

For each test case, output a single integer on its own line, indicating the minimum number of moves I

need to drop all of the balls in the desired order. Output no extra spaces, and do not separate answers

with blank lines. All possible inputs yield answers which will �t in a signed 64-bit integer.

Example

juggler.in juggler.out

3

3

2

1

0

5

Note

Explanation of the sample input: The �rst ball is in the juggler's hand and should be dropped third; the

second ball is immediately clockwise from the �rst ball and should be dropped second; the third ball is

immediately clockwise from the second ball and should be dropped �rst.

Page 7 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem G. Red-Blue Spanning Tree

Input �le: redblue.in

Output �le: redblue.out

Time limit: 10 seconds

Memory limit: 256 mebibytes

Given an undirected, unweighted, connected graph, where each edge is colored either blue or red, determine

whether a spanning tree with exactly k blue edges exists.

Input

There will be several (40 or less) test cases in the input. Each test case will begin with a line with three

integers: n, m and k, where n (2 ≤ n ≤ 1000) is the number of nodes in the graph, m (limited by structure

of the graph) is the number of edges in the graph, and k (0 ≤ k ≤ n) is the number of blue edges desired
in the spanning tree. Each of the next m lines will contain three elements, describing the edges: c, f ,t,
where c is a character, either capital `R' or capital `B', indicating the color of the edge, and f and t are
integers (1 ≤ f, t ≤ n, t 6= f) indicating the nodes that edge goes from and to. The graph is guaranteed

to be connected, and there is guaranteed to be at most one edge between any pair of nodes. with a line

with three zeroes.

Output

For each test case, output single line, containing 1 if it is possible to build a spanning tree with exactly

k blue edges and 0 if it is not possible.

Example

redblue.in redblue.out

3 3 2

B 1 2

B 2 3

R 3 1

2 1 1

R 1 2

0 0 0

1

0

Page 8 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem H. The Red Gem (Division 1 Only!)

Input �le: redgem.in

Output �le: redgem.out

Time limit: 2 seconds

Memory limit: 256 mebibytes

In circle land, in the museum of circles, a grand red circular gem is on display. The curator has decided

to spice up the display, and has placed the gem on a purple circular platform, along with mundane

orange circular gems. Starved citizens of circle land (points) have �ocked to see the grand exhibit of the

exquisite red gem. They cannot step on the purple exhibit �oor, but can only stand on the circumference.

Unfortunately, the mundane orange gems block the view of the exquisite red gem. Please help the museum

folks determine the proportion of the circumference of the purple platform from which all of the red gem

is visible, completely unobstructed by the orange gems.

Input

There will be several (1000 or less) test cases in the input. Each test case will begin with a line with �ve

integers: n, p, x, y, r.

Where n (1 ≤ n ≤ 100) is the number of orange circles, p (10 ≤ p ≤ 1, 000) is the radius of

the purple platform, (x, y) is the center of the red gem relative to the center of the purple platform

(−1, 000 ≤ x, y ≤ 1000), and r (0 ≤ r ≤ 1000) is the radius of the red gem. The red gem is guaranteed to

lie fully on the purple platform. No part of the red gem will extend past the purple platform. On each of the

next n lines will be three integers xi, yi and ri which represent the (xi, yi) center (−1, 000 ≤ xi, yi ≤ 1000)
relative to the center of the purple platform, and radius ri (0 < ri ≤ 1000) of each orange gem. As with

the red gem, each orange gem is guaranteed to lie entirely on the purple platform. The orange gems will

not overlap the red gem, and they will not overlap each other. The input will end with a line with �ve

zeroes.

Output

For each test case, output a single �oating point number on its own line, indicating the proportion of the

perimeter of the purple platform where all of the red gem is visible. This result should be between 0 and

1 (inclusive). Output this number with 4 decimal places of accuracy. Output each number on its own line,

with no spaces, and do not print any blank lines between answers.

Example

redgem.in redgem.out

4 10 0 0 1

5 0 2

0 5 2

-5 0 2

0 -5 2

0 0 0 0 0

0.3082

Page 9 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem I. Science!
Input �le: science.in

Output �le: science.out

Time limit: 5 seconds

Memory limit: 256 Mebibytes

Welcome, ladies and gentlemen, to Aperture Science. Astronauts, War Heroes, Olympians � you're here

because we want the best, and you are it. That said, it's time to make some science.

Now, I want each of you to stand on one of these buttons. Well done, we're making great progress here.

Now let's do it again. Oh, come on � don't stand on the same button! Move, people! No, no, that button's

only for the Astronauts, you know who you are. What?! You say you can't do everything I ask? Ok let's

start over. You there, the Programmer, �gure out how many times we can do this. And make it quick, we

have a lot more science to get through...

Input

There will be several (70 or less) test cases in the input. The �rst line of each case will contain n
(2 ≤ n ≤ 80) giving the number of people (and the number of buttons) in the experiment. The next n
lines will contain n characters each. If the j-th character of the i-th line is `Y' it indicates that the i-th
person can stand on the j-th button (it is `N' otherwise). The last line of input will be a 0.

Output

For each test case, output k, the maximum number of times everyone can be standing on buttons such

that nobody stands on the same button more than once (This might be 0). After that, output k lines.

Each line should contain n integers separated by single spaces, where the i-th integer describes which

person is standing on the i-th button. All of the lines should be valid and none of them should put the

same person on the same button as a previous line of the same test case. Output no extra spaces, and do

not separate answers with blank lines. Note that correct outputs might not be unique.

Example

science.in science.out

3

YYY

NYY

YNY

2

YN

YN

0

2

3 1 2

1 2 3

0

Page 10 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem J. The Worm in the Apple (Division 1 Only!)

Input �le: worm.in

Output �le: worm.out

Time limit: 13 seconds

Memory limit: 256 mebibytes

Willy the Worm was living happily in an apple � until some vile human picked the apple, and started to

eat it! Now, Willy must escape!

Given a description of the apple (de�ned as a convex shape in 3D space), and a list of possible positions

in the apple for Willy (de�ned as 3D points), determine the minimum distance Willy must travel to get

to the surface of the apple from each point.

Input

Input �le will begin with a line with a single integer n (4 ≤ n ≤ 1, 000), which tells the number of points

describing the apple. On the next n lines will be three integers x, y and z (−10, 000 ≤ x, y, z ≤ 10, 000),
where each point (x, y, z) is either on the surface of, or within, the apple. The apple is the convex hull

of these points. No four points will be coplanar. Following the description of the apple, there will be a

line with a single integer q (1 ≤ q ≤ 105), which is the number of queries � that is, the number of points

where Willy might be inside the apple. Each of the following q lines will contain three integers x, y and

z (−10, 000 ≤ x, y, z ≤ 10, 000), representing a point (x, y, z) where Willy might be. All of Willy's points

are guaranteed to be inside the apple.

Output

For each query, output a single �oating point number, indicating the minimum distance Willy must travel

to exit the apple. Output this number with 4 decimal places of accuracy. Output each number on its own

line, with no spaces, and do not print any blank lines between answers.

Example

worm.in worm.out

6

0 0 0

100 0 0

0 100 0

0 0 100

20 20 20

30 20 10

4

1 1 1

30 30 35

7 8 9

90 2 2

1.0

2.8868

7.0

2.00

Page 11 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem K. Combinations (Division 2 Only!)

Input �le: combinations.in

Output �le: combinations.out

Time limit: 2 seconds

Memory limit: 256 Mebibytes

Probability and statistics have numerous examples where people want to analyze how to select m items

from a set of n items. For example, consider the following 5 items: 0, 1, 2, 3, and 4. Suppose you were

interested in selecting 3 items from this list. If we were to list all the ways to select 3 items from this set,

we could list these 10 possibilities: 012, 013, 014, 023, 024, 034, 123, 124, 134, 234.

There are many ways to order the elements of this set, but for this problem we are interested in listing the

combinations lexicographically. That is, if we view the above list as 3-letter �words�, 012 comes before 013

and 134. Note that each 3-letter combination is itself written lexicographically, as is the list of all 3-item

combinations. That is, the digits of the item 014 are written in increasing order (not 041, for example).

The problem you are asked to solve is, given that you wish to consider all the ways to select M
elements from a set of N elements, identify the i-th possibility, if all of those possibilities were listed

lexicographically.

In this problem N can be as large as 36. So, we will use the uppercase letters to �ll out the set of objects,

where the ordering is: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ. That is, the lexicographical

ordering will use these 36 characters in determining �alphabetical� order. (`0' comes before `A', for

example).

Input

Each line of the input will represent one test case and will contain 3 integers: N , M , and I. N represents

the total number of objects to select from, M represent the number of objects to select, and I represents

the position of the ith combination, where the combinations are ordered as described above. N will be at

least 1 and at most 36. M will be at least 1 and no more than N . I will be a legal value for M and N
(i.e., at least 1 and at most N !/(M !(N −M)!). The �nal line of input will be when N is equal to 0. Do

not produce any output for this last line of input. There will be at most 2000 problems to solve in the

input �le.

Output

For each input, display the ith combination using the format shown below, with the problem number,

followed by a colon and space, followed by the i-th combination.

Page 12 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Example

combinations.in combinations.out

5 3 1

5 3 2

5 3 10

4 2 1

4 2 6

10 5 1

10 5 252

11 11 1

36 2 1

36 2 2

36 2 630

36 36 1

36 18 1

36 18 9075135300

0 0 0

1: 012

2: 013

3: 234

4: 01

5: 23

6: 01234

7: 56789

8: 0123456789A

9: 01

10: 02

11: YZ

12:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

13: 0123456789ABCDEFGH

14: IJKLMNOPQRSTUVWXYZ

Page 13 of 14

Some American Contest

XI Open Cup, stage 8, American Grand Prix, May 27, 2012

Problem L. Find a cycle (Division 2 Only!)

Input �le: cycle.in

Output �le: cycle.out

Time limit: 2 seconds

Memory limit: 256 mebibytes

Consider the following number operation (let's call it the root-rounding operation) that begins with some

positive integer, and ends with a positive integer:

1. Begin with a positive integer, n.

2. Compute the largest integer that is less than or equal to the square root of n. Call this result m.

3. If n + m is even, then the �nal result is n + m. Otherwise, the �nal result is n−m.

One might consider taking a number, computing its root-rounded result, and then taking that result and

computing its root-rounded result, and so on. For example, begin with 25, and the result is 30. Then,

take 30 and compute its result: 25. 25 gives 30. 30 gives 25, and so on. This is referred to as a �2-cycle�.

On the other hand, if you begin with 24, the resulting sequence is a 13-cycle: 24, 28, 23, 19, 15, 18, 22,

26, 21, 17, 13, 16, 20, 24. Notice, that the last number creates a cycle. We refer to this particular cycle as

a 13-cycle, because it contains exactly 13 non-repeating integers, with the 14th integer simply repeating

the �rst integer.

Input

First line of input �le contains integer T (1 ≤ T ≤ 200) � number of test cases. Each test case is given

on separate line and contains one positive integer, with value at most 106. You will determine the length

of each integer's root-rounding cycle.

Output

Formatting your results as shown in the sample output below (the input, followed by a colon and space,

followed by the length of its root-rounding cycle).

Example

cycle.in cycle.out

3

25

24

1

25: 2-cycle

24: 13-cycle

1: 2-cycle

Page 14 of 14

