
Croatian Open Competition in Informatics
Round 6, March 13th 2021 Editorial

Editorial

Tasks, test data and solutions were prepared by: Marin Kišić, Pavel Kliska, Vedran Kurdija, Daniel
Paleka, Stjepan Požgaj and Paula Vidas.

Implementation examples are given in attached source code files.

Task Bold

Prepared by: Daniel Paleka and Paula Vidas
Necessary skills: 2D array

We make a new n × m matrix and fill it with ’.’. Then we go through the original matrix, and when we
find ’#’ on some position (i, j), we put ’#’ on positions (i, j), (i, j + 1), (i + 1, j) and (i + 1, j + 1) in the
new matrix.

Task Alias

Prepared by: Marin Kišić and Vedran Kurdija
Necessary skills: Dijkstra’s algorithm

We can think of Rafael’s database as a directed weighted graph. Since vertices are words, we need to first
assign a unique integer between 1 and n to each word to make the implementation easier.

Notice that the task asks for the length of the shortest path from vertex a to vertex b. Therefore, 20
points can be scored using brue force in O(n!) complexity. For additional 20 points, we can use the
Floyd-Warshall algorithm to calculate distances between every two points in O(n3) complexity, and then
answer the questions in O(1).

For all points we can use Dijkstra’s algorithm for each question, which has O(m log n) complexity. The
total complexity of our solution is then O(q m log n).

Task Anagramistica

Prepared by: Marin Kišić and Pavel Kliska
Necessary skills: dynamic programming, combinatorics

The first subtask can be solved by iterating over all possible subsets and counting the number of similar
pairs in each one.

Since each element is either in the chosen subset or not, that leads us to a dynamic programming solution,
where dp[n][k] is the number of ways to choose among the first n words a subset with exactly k similar
pairs. The transition would be:

dp[n][k] = dp[n − 1][k] + dp[n − 1][k − x],

where x is the number of new similar pairs that appear when we add the n-th word to the subset.
Unfortunately, since we don’t know which words are in the subset, we can’t know x.

But, we can use a similar approach if we notice that if we sort the letters in each word, then the words
are similar if and only if they are equal.

After sorting, we get a multiset of words, with m distinct elements, and the i-th element appears ai times.
Let dp[m][k] be the number of ways to choose among the first m different words a subset with exactly k
equal words. The transition is:

dp[m][k] =
i≤ai,

i(i−1)
2 ≤k∑

i=0

(
ai

i

)
dp[m − 1][k − i(i − 1)/2].

1 od 4

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Croatian Open Competition in Informatics
Round 6, March 13th 2021 Editorial

The initial values are dp[0][k] = 1, for k = 0, or 0 otherwise.

Since the numbers in the binomial coefficient are at most n, we can precompute them using Pascal’s
triangle. The complexity for each k is O(n), since the sum of all ai is equal to n, so the total complexity
of the solution is O(n2 + nk).

Task Geometrija

Prepared by: Paula Vidas
Necessary skills: ccw, triangulation, ad hoc

The first subtask can be solved in O(n4) complexity by simply checking for each segment if it crosses with
other segments.

To check if two segemnts cross, we will use the function

ccw(A, B, C) = xA · (yB − yC) + xB · (yC − yA) + xC · (yA − yB).

This is equal to twice the signed area of the triangle ABC (which is not important in this task), and is
positive when A, B and C are in counterclockwise order (ccw order for short).

Segments AB and CD cross if and only if

ccw(A, B, C) · ccw(A, B, D) < 0 and ccw(C, D, A) · ccw(C, D, B) < 0.

(since the points are in general position in this task, we don’t have to deal with special cases that would
arise is some three were collinear). The proof is left as an exercise to the reader.

We say a segment is good if it doesn’t cross with any other segment. For the rest of the solution, we use
the observation that every good segment necessarily belongs to every triangulation of the given set of
points. Triangulation of some set of points on the plane is a division of the convex hull into triangles with
vertices in given points, such that every point is a vertex of at least one triangle. Equivalently, it is a
maximal set of non-crossing segments between the given points. A triangulation can have at most 3n − 6
segments, so if we find some triangulation, we get just O(n) candidates for good segments. The proof of
the claims above is left as an exercise to the reader.

Therefore, the second subtask can be solved in O(n3) complexity. We can build a triangulation in O(n3)
by going through all the segments, checking if it crosses with the already added segments, and if not, we
add it to the triangulation. We then check for every segment we added, in O(n2) complexity, if it crosses
with each possible segment.

We will solve the third subtask in complexity O(n2 log n). Finding a triangulation is the easy part. There
is a lot of ways to do it, fastest in complexity O(n log n), but we will describe an easier algorithm with
O(n2) complexity. First, we find the convex hull, and triangulate that polygon in some way (for example
by taking all diagonals from some point). Then, we go through all interior points, find the triangle that
contains the current point, and divide it into three smaller triangles.

Now we describe how to check in O(n) complexity if some segment is good. Consider a segment PQ. To
make it easier to describe the solution, imagine without loss of generality that the line PQ is vertical and
P is above Q, as in the figure below. Let A1, . . . , As, B1, . . . , Bt be all other points, in ccw order around
P , so that for all Ai it holds ccw(P, Q, Ai) < 0, and for all Bj it holds ccw(P, Q, Bj) > 0 (see the figure).

Consider some point Ai. Let f(i) be the maximum j such that ccw(Ai, P, Bj) < 0 (if it exists). Points
B1, . . . , Bf(i) are exactly those points on the right side that are below the line AiP . It’s easy to see that
f is increasing, so it can be calculated using the two pointers method.

Consider the ccw order of points B1, . . . , Bt around Q (where we take the first point to be the one with
maximum angle ∠PQBj). Let g(j) be the position of Bj in this order.

2 od 4

https://en.wikipedia.org/wiki/Point-set_triangulation


Croatian Open Competition in Informatics
Round 6, March 13th 2021 Editorial

Let j′ = arg max1≤j≤f(i) g(j) (the j among 1, . . . , f(i) for which g(j) is maximal). We claim that it’s
enough to check if segment AiBj′ crosses with segment PQ, i.e. if it doesn’t, then the segment AiBj for
any other j also doesn’t cross with PQ.

It’s clear that AiBj and PQ cross if and only if point Bj is below the line AiP and above the line AiQ.
Among the right points that are below AiP , point Bj′ is “furthest around Q”, so if it’s below AiQ, then
all other points are too.

So, for each point Ai we need to find its j′ (it can easily be updated when we calculate f) and check
whether segments AiBj′ and PQ cross. If there is no such i, then PQ is a good segment.

P

Q

A1

A2

A3

B1

B2

B3

B4

g(1) = 1

g(2) = 3

g(4) = 4

g(3) = 2

f(2) = 3

The ccw order of points around some center point can be found directly by sorting the points in O(n log n)
complexity. It’s worth noting that there exists a (much more complicated) algorithm with O(n2) complexity
that determines this for all points together (so the total complexity of the solution of this task would be
O(n2)). It uses duality to transform it into the line arrangement problem.

Task Index

Prepared by: Marin Kišić
Necessary skills: binary search, persistent segment tree

First subtask can be solved by brute force.

The idea for the rest of the solution is to use binary seach to determine the h-index. We need to be able
to answer questions of the form “How many numbers on positions l through r are greater than or equal to
h?” efficiently. The difference between the second and third subtask will be in the data structure we use
to answer such queries.

One possible approach is to build a segment tree, where the node corresponding to the interval [a, b]
holds the numbers pa, pa+1, . . . , pb sorted in increasing order. When we query, we use binary search in the
appropriate nodes to find how many numbers are greater that h in the corresponding interval of the node.
Therefore we can answer each question from the problem in O(log3 n) complexity, which is fast enough for
the second subtask.

For all points, there are multiple approaches. One is to use parallel binary search (most solutions on
HONI, local version of COCI, were of this type). We will describe a different solution that uses a persistent
segment tree. Times will be the prefixes of the array, that is, we will have a “separate” segment tree for each
prefix. A node in the tree corresponding to the interval [a, b] will hold the value cnta + cnta+1 + ... + cntb,
where cnti is the number of elements in the prefix that are equal to i.

Now we can answer the question “How many numbers on positions l through r are greater than or equal
to h?” by querying the sum of values in the interval [h, 200 000] in moments r and l − 1, and substracting

3 od 4

https://en.wikipedia.org/wiki/Duality_(projective_geometry)
https://en.wikipedia.org/wiki/Arrangement_of_lines#Algorithms


Croatian Open Competition in Informatics
Round 6, March 13th 2021 Editorial

them. The complexity per question from the problem is O(log2 n).

For those who want to know more: there is a solution with O(log2 n) complexity per question, that uses
the same data structure as described for the second subtask. It can be speed up using a technique known
as fractional cascading. You can read more about it here.

4 od 4

https://cp-algorithms.com/data_structures/segment_tree.html

