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Tasks, test data and solutions were prepared by: Marin Kišić, Pavel Kliska, Daniel Paleka, Bojan Štetić
and Paula Vidas.

Implementation examples are given in attached source code files.

Task Pizza

Prepared by: Paula Vidas
Necessary skills: ad hoc

For each pizza we just check if it contains a topping which Mirko dislikes, and if it doesn’t we add 1 to
the solution.

Task Vepar

Prepared by: Daniel Paleka
Necessary skills: prime sieve, vp

For simplicity, replace the expression

a · (a + 1) · · · b | c · (c + 1) · · · d

with the equivalent

(c− 1)! · b! | (a− 1)! · d!.

For each prime p, define the map vp(x) which returns the largest power of p which divides x.

The left-hand side divides the right-hand side if an only if: for each p, we have vp of the left-hand size is
at most the vp of the right-hand side.

It’s easy to see vp(x · y) = vp(x) + vp(y). We now want only vp(x!).

Proposition: We have
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Proof: The first summand counts multiples of p, the second counts mutiples of p2, and so on.

The solution is thus: find all primes up to 107, implement vp(x!). and check the relevant inequality of vp

for each prime.

For implementations, see the official solutions.

Task Hop

Prepared by: Daniel Paleka
Necessary skills: ad hoc

There are several solutions; we describe the shortest one. The idea is: if a|b and a < b, then a ≤ 2b.

Let greatest_bit(x) equal the position of the leading bit in the binary representation of x.

We give the edge between a and b to frog 1 if b greatest_bit(a)
4 c = b greatest_bit(b)

4 c.

All other edges we give to frog 2 if b greatest_bit(a)
16 c = b greatest_bit(b)

16 c. and the remaining ones we give to
frog 3.

Using greatest_bit(x) < 64, we can prove this construction works.
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Task Janjetina

Prepared by: Bojan Štetić
Necessary skills: centroid decomposition, Fenwick tree

First subtask can be solved by checking for each pair (x, y) if the condition holds.

In the second subtask, the tree is a chain. We will describe a solution using divide-and-conquer method.
Let f(l, r) be the number of valid pairs such that l ≤ x < y ≤ r, and let m = b l+r

2 c. If we calculate the
number of valid pairs (x, y) such that 1 ≤ x ≤ m < y ≤ r, i.e. the pairs whose path goes through the
middle edge m↔ m + 1, we can calculate f(l, r) as the sum of that number, f(l, m), and f(m + 1, r).

Let d(x) be the distance between nodes x and m, and v(x) be the maximum weight on the path from
x to m (we can take v(m) to be −∞). Pair (x, y) is valid if max(v(x), v(y))− (d(x) + d(y)) ≥ k. If we
assume that v(x) ≤ v(y), the condition is v(y)− (d(x) + d(y)) ≥ k ⇐⇒ d(x) ≤ v(y)− d(y)− k.

We can sort nodes l, . . . , r ascending by v(x), and go through them in that order. We will use a Fenwick
tree, where we will store the counts of d(x) for processed nodes. Let y be the current node. We will first
query in our Fenwick tree the sum of the prefix v(y)− d(y)− k, and then add 1 to the position d(y).

By doing this, we have counted all valid pairs, but also all pairs that are in either the left or the right half
that fulfill the condition, which we don’t want. So, we will repeat the procedure with nodes l, . . . , m, and
with nodes m + 1, . . . , r, and substract from the result.

The solution for all points is very simmilar. Now m will be the centroid of the current component.
Functions d and v are defined in the same way. Instead of two halves, we now have some number of
subtrees. We first calculate the result with all nodes, and then substract results for each subtree. Finally,
we recursively call f for all subtrees.

The complexity is O(n log2 n).

Task Patkice II

Prepared by: Pavel Kliska
Necessary skills: 0-1 BFS or Dijkstra algorithm

The map can be thought of as a weighted directed graph. The nodes are cells of the map, and two nodes
are connected if the corresponding cells share a side. The weight depends on the direction of the current.
If the current in cell A is directed towards cell B (or A is the initial island), the weight of edge A→ B is
zero because we don’t have to change the map to be able to go from A to B directly. Otherwise, we have
to change one character on the map and the weight is one.

To find the minimum number of changes needed, we just need to find the distance from ’o’ to ’x’ in
the described graph, which can be done with 0-1 BFS. Dijkstra algorithm is a bit slower, but it was also
enough to get all points.

The changed matrix can be constructed like this: we start in ’x’, and in each step we take an edge whose
weight is equal to the difference of the distance of its endpoints to ’o’, and we replace the character in
the current cell with the appropriate one if the weight is equal to one.
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