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Task Baza Author: Branimir Filipović 

 
In order to successfully solve this task, we first need to input and store the entire database, 
the matrix of dimensions NxM. 
 
Then, for each query, we need to iterate over each row of the matrix and count how many 
rows of the database correspond to the query in the way described in the task. 
 
Pseudocode (written in Python 3.x): 
def checker(row, query): 
  n = len(row) 
 
  for i in range(n): 
    if ((query[i] != -1) and (row[i] != query[i])): 
      return False 
 
  return True 
 
n, m = map(int, input().split()) 
base = [] 
 
for i in range(n): 
  row = list(map(int, input().split())) 
  base.append(row) 
 
q = int(input()) 
 
for i in range(q): 
  query = list(map(int, input().split())) 
 
  z = 0 
  for j in range(n): 
    if (checker(base[j], query)): 
      z += 1 
 
  print (z) 
 
Necessary skills:​ ​for​ loop, matrices 
Category:​ ad-hoc 
 
Task Uzastopni Author: Adrian Satja Kurdija 

 



 

Trying out every possibility is too slow because of the size of the number N. It is important to 
notice that the number of possible summands cannot be very large. More precisely, the 
number of summands will not be greater than the square root of 2N, because otherwise their 
sum would exceed N (see this for yourself). Therefore, we have enough time to iterate over 
all possible K (where K is the number of consecutive summands), and for each of them 
search for the corresponding summands, i.e., the first and the last number -- we can do this 
either mathematically (the formula is easily derived), or by binary search. 
 
Necessary skills:​ mathematical problem analysis 
Category:​ ad hoc 
 
 

Task: Igra Author: Nikola Herceg 
 
We will construct a word letter by letter, starting from the first one, in a way that we try to                    
place the lexicographically smallest letter to the current position. After we choose a letter, we               
need to check whether the remaining letters can be placed so that none of them match the                 
same letter in Mirko’s word (MR). Therefore, we are not interested in the order of these                
letters, but only if they can be arranged somehow. 
 
Let a, b and c denote the number of remaining letters ‘a’, ‘b’ and ‘c’, respectively, and A, B                   
and C the number of remaining letters ‘a’, ‘b’ and ‘c’ in MR. Let’s try to place k letters ‘a’ to                     
the positions of letters ‘b’ in MR, i.e., reduce a and B by k. The remaining letters ‘a’ we place                    
to the positions of letters ‘c’ in MR, i.e., reduce C by a and set a to 0. We set the remaining                      
letters ‘b’ in MR to letters ‘c’, i.e., reduce c by B and set B to 0. Now, we need to place the                       
remaining letters ‘c’ to the positions of letters ‘a’ in MR, i.e., reduce A by c and set c to 0. If                      
we couldn’t have made any of the previous moves, that means no solution exists for the                
chosen k. If we could have, we are left with checking whether letters ‘b’ can be placed to the                   
positions of letters ‘a’ and ‘c’ in MR. This will hold if A + C = b. In that case, the letters can be                        
placed for this k and the check is done. 
 
We will test this out for each k between 0 and B. If the check didn’t succeed for any k, then it                      
is impossible to place the remaining letters so that none of them match the same letter in                 
Mirko’s word, otherwise we can. This can needs to be done for each of n letters, so the total                   
complexity is O(n​2​). We leave the linear solution as an exercise for the reader. 
 
Necessary skills:​ strings 
Category:​ greedy 
 
 

Task Poklon Author: Ivan Paljak 

 
Let S be the total mass of the weights after balancing the scale. Then the total mass of the                   
weights on the beams of the large scale is equal to S/2, and the sum of the weights on the                    



 

beams of these scales is equal to S/4, and so on. Generally, a beam of a scale at depth ​r                    
holds a load of mass S/2^r. 
 
Since some beams (at depth r) already have a weight of mass m, additionally the following                
inequality must hold: S/2^r >= m. Finally, we have S = max {m * 2^r} for each weight of mass                    
m, that is at depth r. 
 
We are left with efficiently comparing the numbers of the form a * 2^b, where a and b are                   
small enough to fit in a 32-bit data type. Since these numbers in binary notation have at most                  
32 ones (multiplication with 2^b corresponds to left shift b times), it is sufficient to just linearly                 
iterate over the ones in the binary notation of these numbers. 
 
For implementation details, consult the official solution. 
 
Necessary skills:​ dfs, trees, mathematical problem analysis 
Category:​ ad-hoc, graphs 
 
 

Task Paralelogrami Author: Mislav Balunović 
 
If all points are colinear, then we obviously can’t make a single move, so the solution does                 
not exist. 
 
First, notice that the operation of mapping the point C over points A and B can be written in a                    
simple algebraic form, instead of a geometric one: 

 
(C​x​, C​y​) is mapped over (A​x​, A​y​) and (B​x​, B​y​) into point (A​x​ + B​x​ - C​x​, A​y​ + B​y ​- C​y​) 

 
Let’s assume that there are 3 non-colinear points. We will prove that we can bring them into                 
a part of the plane that holds points with x and y coordinates being at least 5. Then, each of                    
the remaining N - 3 points can be mapped into the first quadrant using exactly one operation.                 
From the upper equation, it is clear why this newly created point is located in the first                 
quadrant. 

 
If there are 3 non-colinear points, let’s prove that we can           
bring them in the aforementioned part of the plane. Let the           
3 points be A, B, C and let D be a point obtained by a single                
mapping, for example of point C over AB. 
 
Now, we have a parallelogram ACBD. Notice that, by using          
this parallelogram, we can pave the plane in the way shown           
in the image (by translating that parallelogram). 
 
 
 



 

Also, notice that, for each of the parallelograms used for paving the plane, there is a series                 
of operations after which our 3 points become 3 vertices of that parallelogram. 
Since the parallelogram paves the entire plane, it also paves the quadrant that holds the               
points with x and y coordinates being at least 5. Therefore, there must exist a parallelogram                
that is entirely located within that quadrant and a series of operations after which our points                
become 3 vertices of that quadrant. 
 
One remaining question is how many moves this algorithm takes. There are at least 2               
algorithms that find a sufficiently small number of moves: 
 

● We run a BFS algorithm where the state is the 3 current points, and the transition is                 
the application of one of the 3 possible operations in each state. We limit the BFS not                 
to spread into triangles that do not intersect with the part of the plane              

, since we know that the solution exists even without spreading− 0, ∞[ 1  ] × − 0, ∞[ 1  ]            
into such triangles. The coordinates are small, so we use a brute force approach to               
see that, worst case scenario, we need less than 1200 operations to get to the               
required part of the plane, which is sufficient. 

● We denote with A, B, C the vertices of our triangle. Notice that there exists a vertex                 
of the triangle, without loss of generality, let’s say that it is vertex C, such that the part                  
of the plane bounded by rays CA and CB intersects with the part of the plane where                 
we want to bring the 3 points. We map point C over line AB. We leave the proof of                   
correctness of this algorithm as an exercise for the reader. 

 
Necessary skills:​ bfs 
Category:​ geometry, ad-hoc 
 
 
Task Klavir Author: Dominik Gleich 

 
Let’s first try to solve the task for one word, meaning not for all of its prefixes. 
Let’s denote with S the sequence of tones for which we calculate the expected number of                
key presses in order to hear it. Let A be the sequence of randomly pressed keys. We denote                  
three types of positions in sequence A, p​i​

1​, p​i​
2​, p​i​

3​.  
Each position represents the start of tone sequence S in sequence A. 

1) The general occurrence position of tone sequence S. 
2) Each occurrence position of tone sequence S that is not a part of the suffix of another                 

occurrence of tone sequence S. 
3) Each occurrence position of tone sequence S that starts as suffix of another type of               

occurrence. 
There are infinitely many of each of these positions in an infinite random sequence A. 
 
Now, let’s observe the positions of type 2 and the consecutive position differences. It is not                
difficult to notice that the average difference between consecutive positions is actually the             
solution of the problem. More precisely, 
 



 

 
is the solution of the problem. Let’s denote with F(1), F(2), F(3) the frequencies of               
appearances of tones of the types 1, 2 and 3. Given that the frequency of type 1 is any                   
occurrence, and our generated tone sequence is completely random; the occurrence           
frequency is 1/N​l​, where N is the number of different piano tones. The occurrence frequency               
of number 2 is equal to: 

  
Since the occurrence of type 1 is actually a union of occurrences of type 2 and 3, we                  
conclude that F(1) = F(2) + F(3). 
 
Now that we have connected these three frequencies, let’s try to connect the occurrence              
frequencies of the second and third type. 
 
Since each occurrence of the third type is created from the occurrence of the second type,                
and by adding a sequence of letters to the end of the occurrence of the second type: more                  
precisely, if the suffix is at the end of the occurrence of the second type, which is at the                   
same time a prefix of the occurrence of the tone sequence of length ​i​, then we need to add ​l                    
- i characters in order to get one occurrence of the third type. Since all letter additions are                  
independent and since we add the letters completely randomly, it holds 

 
Here, we used the kmp function, as in the fail function in the KMP algorithm. For more                 
details on KMP, consult additional resources. 
Further manipulations gets us: 



 

 
Since the solution we want is 1/F(2), we then get: 

 
The last expression is simply efficiently calculated modulo m. The solution for all prefixes of               
the tone sequence, which was the original task, is left as an exercise for the reader. 
 
Necessary skills: ​Knuth-Morris-Pratt, mathematical problem analysis 
Category: ​ad-hoc, probabilities 


