CROATIAN OPEN COMPETITION IN
INFORMATICS 2011/2012

Round 6

SOLUTIONS

COCI 2011/2012

Task JACK

Round 6

Author: Adrian Satja Kurdija

N is small enough to try out all the possible combinations of three
cards. There are less than 100° combinations. We can use three
nested for-loops: first one to choose the first card we will take, second
one to choose the second card, and third one to choose the final card.

In the inner loop, we check if the sum of the chosen cards is greater
than M. If it is, we continue to the next combination. If it's not, we
check if this sum is greater than the best sum found so far and update
that sum if it is. At the end we simply output the largest sum found.

Necessary skills: array manipulation, nested for-loops

Category: ad hoc

COCI 2011/2012 Task PROZORI

Round 6 Author: Adrian Satja Kurdija

After reading in 5M + 1 rows and 5N + 1 columns of the input, we can
notice that only some fields are of importance to us. More specifically:

- for the 1st column of windows, it’s enough to analyze the 2nd column
of the input matrix,

- for the 2nd windows column, it's enough to analyze the 7th column
of the input matrix,

- for the 3rd windows column, we need only the 12th column of the
input matrix...

In general:
- for the Kth column of windows, it’s enough to analyze the (5K-3)-rd
column of the input matrix.

Inside each of the selected columns, the next four fields after each
boundary ‘#’ are of interest to us: the number of asterisks in those
four fields will determine the type for that window.

While traversing columns, we must keep track of the number of
windows found so far for each type. Best way to do this is to have a
small array with five integers, and increase the number at the
corresponding index as we come across different types of windows. At
the end, we just output the numbers from that array.

Necessary skills: character-matrix manipulation

Category: strings

COCI 2011/2012 Task ZAGRADE

Round 6 Author: Bruno Rahle

The first step is to find matching pairs of brackets. This is easily done
by traversing the expression from left to right and using stack to keep
track of currently unmatched open brackets. More precisely, when we
encounter some open bracket, we push it’s location to the stack. When
we encounter a closed bracket, this bracket and the bracket at the top
of the stack will form a matching pair. There are some wrong
approaches for matching the brackets, and they were worth 40% of
the total number of points.

The next step is to generate all the possible expressions. There are
two ways to do this, using bitmasks or using recursion. Recursion can
decide which pairs of brackets to use, and some other function can
remove those pairs and store the obtained expression. Here is the
pseudocode:

choose(pair_index, total pairs, removed pairs):

if pair_index = total_pairs:

call gen_expression(removed_pairs)

return
add pair_index to removed_pairs
choose(pair_index+1, total_pairs, removed_pairs)
remove pair_index from removed_pairs
choose(pair_index+1, total_pairs, removed_pairs)

Here we can substitute recursion with bitmasks. Idea is that any
integer can tell us which brackets to remove if we see how that integer
is written in binary form. If there is a digit 1 at some index in binary
representation, than we will remove the corresponding pair of
brackets, and otherwise we won't. Now we can count from 0 to 2N - 1,
and generate all the possible expressions without the use of recursion.
Here is a good tutorial on this approach:
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=b
itManipulation

Finally, we must sort the obtained expressions and remove duplicates.

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=bitManipulation

Solution that doesn’t take care of duplicates gets 70% of the total
number of points.

Necessary skills: string manipulation, bitmasks, recursion, stack

Category: strings, sorting

COCI 2011/2012 Task REZ

Round 6 Author: Anton Grbin

First thing to notice is that, in order to obtain as many parts as
possible, no three cuts will intersect in a common point. This is easy to
see: if there is an intersection of three cuts, then we will get an extra
part by moving slightly one of those cuts.

Now we can find a maximum number of parts as a function of number
of used cuts:

T
number of parts(r) =1+ > 1
i=1
So we must find the minimum r for which number of parts(r) = K
Since our function is obviously monotonic, we can use binary search to
find the minimum r.

If we output only the expected r, we get 50% of the total number of
points.

There are many ways to find the actual cuts, and here is the simplest
one. Make the iy, cut by connecting these two points:
(5000 -i, -5000) and (-5000, -5000 + 1)

Necessary skills: binary search, plane geometry

Category: ad-hoc

COCI 2011/2012 Task PASTELE

Round 6 Author: Goran Gasic

Let’s formulate the expression for colorfulness of some set:

maz; j(maz(|R;—R;||G;—Gj

This can be rewritten as:

maz(maz; j(R;— Rj)maz; ;(Gi—Gj),mazx; ;(Bi—Bj))

If we look at R, G, and B values of colors as points in space,
colorfulness is equal to the largest side of the smallest bounding
rectangular cuboid. Since values of the input coordinates are rather
small, this leads us to a solution that traverses each of the possible
rectangular cuboids and checks if there are at least K points inside it.
The number of points in any rectangular cuboid can be found in
constant complexity using the inclusion-exclusion principle. This
solution earns 50% of the points.

Since colorfulness is equal to the largest side, we won't lose anything if
we check only cubes. This optimization will earn additional 30% of the

points.

Finally, we can use binary search to find the smallest cube with one
corner fixed that contains at least K points.

Necessary skills: binary search, inclusion-exclusion principle

Category: computational geometry, searching

COCI 2011/2012 Task KOSARE

Round 6 Author: Gustav Matula

Each box can be represented using a bitmask: i-th bit will tell us
whether i-th toy is present in this box. Our problem can now be
reformulated: find the number of subsets of boxes such that total
bitwise-or has no zeroes in it’s binary representation.

We could use dynamic programming and find solutions for each
f(masks_left, current_bitwise_or). This solution has complexity of O(N
* 2M) and earns 50% of the points. We won’t go into details of this
solution, but various implementations can be found among competitors
solutions.

Let’'s see how to come up with faster solution. Let bmask] be the
number of masks from the input that are submasks of mask. Then the
number of subsets whose bitwise-or is a submask of mask is equal to
c[mask] = 2PImaskl Once we have ¢ calculated, we get the solution in
complexity O(2™) by using the inclusion-exclusion principle.

But how to get sequence b? Let’s take some mask 1mask that begins
with 1. Here mask denotes rest of the bitmask. Let's say we already
know the number of it's submasks that begin with 1. Number of
submasks that begin with 0 is equal to number of submasks of
Omask. This suggests recursive approach: we solve our problem
separately for masks beginning with 0 and 1, and then combine those
solutions into the total solution.

Complexity of finding bis T(2M) =0(2") + 2T(2"*) = Oo(M - 2M).
Total complexity becomes O(NM + M * 2M),
It is also possible to avoid using inclusion-exclusion principle, since we

can calculate ¢ within at the bottom of the same recursion we use for
finding b. Examine the official solutions for details.

b could also be found by brute force in complexity O(3"), and this
approach is worth 70% of the points.

Necessary skills: bit masks, divide & conquer approach, inclusion-
exclusion principle
Category: combinatorics

