CROATIAN OPEN COMPETITION IN
INFORMATICS

7" ROUND

SOLUTIONS



COCI 2010/11 Task SECER

7™ round, April 9", 2011 Author: Adrian Satja Kurdija

If N is a multiple of 5, it’s obviously best to carry only 5-kilogram packages.
If this is not the case, we will have to use at least one 3-kilogram package.

From this we derive the following algorithm: use 3-kilogram packages as long as
remaining number is not a multiple of 5, and then use only 5-kilogram packages to
use up the remaining sugar.

There are other approaches to solving this task. We could use two loops to try out
all the possible combinations of 3 and 5-kilogram packages, and find out which one
gives as the correct amount of sugar in least number of packages used.
Necessary skills:

Basic arithmetic operations

Tags:

Ad-hoc




COCI 2010/11 Task KOLO

7. kolo, 9. travnja 2011. Author: Adrian Satja Kurdija

We will store the wheel as array of characters initially filled with question marks.
We need to simulate every spin that Mirko makes and write the obtained letter into
the corresponding field. If that field is already filled with letter different than the
one we are trying to write, we output ‘!” and exit.

To simulate turning of the wheel in one direction, we will pretend to move the
arrow around the wheel in the opposite direction. If at some point we reach the end
of the array, we start from the beginning.

When we are done, we must check whether some letter appears twice in the array.
If this is the case, we output '!". Otherwise we output the array in requested order.

Necessary skills:
Array manipulation
Tags:

Ad-hoc



COCI 2010/11 Task GITARA

7. kolo, 9. travnja 2011. Author: Adrian Satja Kurdija

We look at each string separately, since they are mutually independent. For each
string, we will simulate the events on that string.

We will store the sequence of currently pressed frets, in ascending order.

When new fret is to be pressed, we must remove all the fingers from higher frets
that are already pressed. We do this by removing the elements one by one from
the back of the sequence until we have reached the lower fret, or the sequence
becomes empty. Then we can safely append the new fret to the sequence.

Since each pressing is present exactly once in the sequence, this algorithm has
linear complexity.

This kind of sequence, where elements are only added to and removed from the
end, is called stack.

Necessary skills:

Stack manipulation

Tags:

Data structures




COCI 2010/11 Task POSTAR

7. kolo, 9. travnja 2011. Author: Goran Gasi¢

First idea is to check all routes that visit all the houses. This solution has
exponential complexity and will yield 30% of the total number of points. In order to
improve this, we observe that we don’t need to know the exact route to solve the
task.

Given matrix can be viewed as a graph, with nodes corresponding to cells of the
matrix and edges representing adjacent cells. Nodes that we will pass through in
our route will be a part of some connected component of this graph. Let’s assume
that we can only use nodes with attitudes from interval [I,r]. We can determine if
it's possible to visit all the houses in the reduced graph by checking if some
connected component contains all the houses and the starting point. This leads to
an O(N®) solution as we can try out all the possible values for | and r. This solution
is worth 60% of the total number of points.

We can further improve our solution by observing that if we fix the value of |, we
can binary search for best r. Complexity now becomes O(N* log N?) which is enough
to obtain maximum number of points.

O(N*) solution also exists but we will not discuss it here.

Necessary skills:
Binary search, graph traversal (BFS or DFS)

Tags:
Graph theory



COCI 2010/11 Task KUGLICE

7. kolo, 9. travnja 2011. Author: Filip Paveti¢

We will solve the task using the off-line approach, i.e. we will load all the input data
at the beginning and then analyse it in order to find the answers of given queries.
It turns out that it’s easier to solve the task if we execute queries in backwards
order. Instead of removing the edges we will be adding them.

This allows us the solve the task using the small modification of the union-find

algorithm.

Necessary skills:
Union-find algorithm

Tags:
Data structures


http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Disjoint-set_data_structure

COCI 2010/11 Task UPIT

7. kolo, 9. travnja 2011. Author: Goran Zuzi¢

We can solve this task by building red-black tree or splay tree using the input data.
Each node will keep track of the sum of all the nodes beneath it. We can easily
answer the queries of type 3 and 4 by using standard binary tree manipulation
techniques, and adjusting some sums along the way. Supporting query types 1 and
2 is a bit trickier. We will use the algorithm called lazy propagation.

Assume that we have to set all elements within given range to the same value. We
begin by finding the set of O(log N) nodes that exactly cover that range. For each
node in that set, we mark that all of the node’s children are set to wanted value.
Later on, when we encounter the node that has this mark set and would like to
descend into that node’s children, we simply transfer on this mark to all the
children. We can now support queries of type 1.

Solving the queries of type 2 can be achieved in a similar way. We store two
integers A and B for each node. Those integers suggest that k-th child of that node
should be increased by A*k+B. We “propagate” A and B in the same way as
described above. We must be careful in order to keep the correct sum stored in
nodes at all times.

We suggest the following sources for further reading:
e http://en.wikipedia.org/wiki/Red black tree,
e http://en.wikipedia.org/wiki/Splay tree,
e Robert Sedgewick: Algorithms.

Necessary skills:
Tournament trees, balansed trees, tree augmentation
Tags:

Data structures


http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/Splay_tree

