
COCI 2009/2010 2. round, 21. November 2009.

TASK FAKTOR RIMSKI KUTEVI VUK POSLOZI PASIJANS

source code

faktor.pas

faktor.c

faktor.cpp

rimski.pas

rimski.c

rimski.cpp

kutevi.pas

kutevi.c

kutevi.cpp

vuk.pas

vuk.c

vuk.cpp

poslozi.pas

poslozi.c

poslozi.cpp

pasijans.pas

pasijans.c

pasijans.cpp

input standard input (stdin)

output standard output (stdout)

time limit 1 s 1 s 1 s 1 s 1.5 s 6 s

memory limit 32 MB 32 MB 32 MB 32 MB 32 MB 128 MB

point value

30 50 70 100 120 130

500

COCI 2009/2010 Task FAKTOR

2. round, 21. November 2009.

Author: Marko Ivanković, Goran Žužić

Impact factor of a scientific journal is a measure reflecting the average number
of citations to articles published in science journals. For this task we are using a
simplified formula for calculating the impact factor:

Total sum of all citations articles published in the journal recived
Total number of articles published

Rounding is always preformed up. For example the impact factor of the
“Journal for ore research and time wasting” that published 38 articles quoted
894 times is 894 / 38 = 23.53 rounding up to 24.

You are the editor of one scientific journal. You know how much article you are
going to publish and the owners are pushing you to reach a specific impact
factor. You are wondering how many scientists you will have to bribe to cite
your article to meet the owners demands. Since money is tight you want to
bribe the minimal amount of scientists.

INPUT

First and only line of input will contain 2 integers, A (1 ≤ A ≤ 100), number of
articles you plan to publish and I (1 ≤ I ≤ 100) impact factor the owners
require.

OUTPUT

First and only line of output should contain one integer, the minimal number
of scientists you need to bribe.

SAMPLE TESTS

input

38 24

output

875

input

1 100

output

100

input

10 10

output

91

COCI 2009/2010 Task RIMSKI

2. round, 21. november 2009.

Author: Filip Barl

Using roman numerals the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 are written as 'I', 'II',
'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX'. Numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 are
written as 'X', 'XX', 'XXX', 'XL', 'L', 'LX', 'LXX', 'LXXX', 'XC'.

Any number smaller than 100 can be written by converting tens and ones
separately and concatenating the results. So, for example, the number 48
would be written as XLVIII, XL for 40 and VIII for 8.

Given a number written in roman numerals, rearrange it's characters so that
you create the smallest possible number, written in roman numerals.

INPUT

The first and only line of input contains one integer B (1 ≤ B < 100), written
using roman numerals.

OUTPUT

The first and only line of output should contain a rearrangement of input
characters so that it represents the smallest possible number, written in roman
numerals.

SAMPLE TESTS

input

VII

output

VII

input

VI

output

IV

input

III

output

III

COCI 2009/2010 Task KUTEVI

2. round, 21. november 2009.

Author: Bruno Rahle

One day Mirko was cleaning up his room and found a straightedge and a

compass. He went to the school the next day and challenged his friend Slavko

to a geometric construction battle. Mirko knows how to construct some angles

using the straightedge and compass and knows how to subtract and add any

two angels he constructs. Slavko now shouts random angles and Mirko must

draw them as fast as possible.

You are observing this battle and would like to know if Mirko can construct the

angles Slavko shouts at all.

INPUT

The first line of input contains two integers, N (1 ≤ N ≤ 10), number of angles

Mirko knows how to construct initially and K (1 ≤ K ≤ 10), number of angles

Slavko selected.

The second line of input contains N integers, all smaller than 360, the angles

Mirko knows how to construct initially.

The third line contains K integers, all smaller than 360, the angles Slavko

selected.

OUTPUT

Output consist of K lines, one for each angle Slavko selected. The i-th line

should contain "YES" if Mirko can construct the i-th angle, and "NO" otherwise.

SAMPLE TESTS

input

2 1
30 70
40

output

YES

input

1 1
100
60

output

YES

input

3 2
10 20 30
5 70

output

NO
YES

COCI 2009/2010 Task KUTEVI

2. round, 21. november 2009.

Author: Bruno Rahle

First example description:

Subtracting 30° from 70° yields 70° - 30° = 40°.

Second example description:

Adding 100° 15 times yields 1500°, also known as 60°.

COCI 2009/2010 Task VUK

2. round, 21. november 2009.

Author: Filip Barl

Vjekoslav the Wolf is running away from a bunch of blood hungry hunters. The

hunters are smart and hide behind trees. Vjekoslav knows this, but doesn't

know which trees. He would like to run to his comfortable, civilized cottage (as

opposed to the hunters quite uncivilized den, yes I am rooting for the Wolf

here) staying as far away as possible from any trees.

The forest can be represented as a N by M gird. Let us mark empty meadow

patches with '.', patches with a tree in the middle with '+', Vjekoslav's current

position with 'V' and the position of his cottage with 'J'. Vjekoslav can run from

his current patch to any other patch north, east, south or west from him, even

if it contains a tree.

If Vjekoslav is standing in R-th row and C-th column on the grid and there is a

tree in the A-th row and B-th column then the distance between Vjekoslav and

that tree is:

|R-A| + |C-B|

Help Vjekoslav find the best route to his cottage. The best route is any route

that maximizes the minimal distance between Vjekoslav and all trees at any

given moment.

Note that Vjekoslav's cottage doesn't occupy the entire patch so that

patch must also be included in the route.

INPUT

The first line of input contains integers N and M (1 ≤ N, M ≤ 500), grid

dimensions.

The next N lines contain M characters each: '.', '+', 'V', 'J'.

Input will contain exactly one character 'V' and 'J' and at least one character

'+'.

OUTPUT

Output a single integer, the minimal distance from a tree in the optimal route.

COCI 2009/2010 Task VUK

2. round, 21. november 2009.

Author: Filip Barl

SAMPLE TESTS

input

4 4
+...
....
....
V..J

output

3

input

4 5
.....
.+++.
.+.+.
V+.J+

output

0

COCI 2009/2010 Task POSLOZI

2. round, 21. november 2009.

Author: Marko Ivanković

“Arrange” is a planetary popular Flash game. In “Arrange” the player is given a

permutation of numbers 1 to N and a list of allowed swaps. He then has to

perform a sequence of swaps that transforms the initial permutation back to

the ordered sequence 1,2,3,4,5...N.

In order to break the high score list, you need to perform the minimal amount

of swaps possible. You can't do that, but you can write a program that does it

for you!

INPUT

The first line of input contains two integers, N (1 ≤ N ≤ 12), the length of the

initial sequence and M (1 ≤ M ≤ N*(N – 1) / 2) number of allowed swaps.

The second line of input contains a permutation of number 1 to N.

The next M lines contain descriptions of allowed swaps. If the line contains

numbers A and B you are allowed to swap the A-th number with the B-th

number. The input will never contain two identical swaps.

Note: the test data shall be such that the solution, not necessarily unique, will

always exist.

OUTPUT

In the first line of input print the minimal number of swaps, X.

In the next X lines print the required swaps, in order. In each line print the

index of the swap performed. Swaps are numbered increasingly as they appear

in the input, starting from 1.

COCI 2009/2010 Task POSLOZI

2. round, 21. november 2009.

Author: Marko Ivanković

SAMPLE TESTS

input

2 1
2 1
1 2

output

1
1

input

3 2
2 1 3
1 3
2 3

output

3
2
1
2

input

5 5
1 2 3 4 5
1 5
2 5
1 4
1 1
3 5

output

0

COCI 2009/2010 Task PASIJANS

2. round, 21. november 2009.

Author: Goran Žužić, Luka Kalinovčić

Pasijans, patience, or solitaire is the name for a group of single player card

games. One new such game, so new it has no name, is played with cards

sporting random integers as values. The game starts by shuffling all cards and

distributing them in N sequences, not necessarily of equal length.

During each turn, the player can remove the first card in any sequence and

place it at the end of the “Solution sequence”. The card that was second in the

selected sequence now becomes the first and the turn ends. Of course once

the card is in the “Solution sequence” it cannot be removed, replaced or

altered in any way. So don't even try.

The game ends when all cards are in the “Solution sequence”. The object of the

game is to construct the best possible “Solution sequence”. One sequence is

better than the other if for the first cards they differ, lets call them X and Y, the

value on the card X is smaller than the value on the card Y.

Write a program that finds the best possible “Solution sequence”.

INPUT

The first line contains one integer N (1 ≤ N ≤ 1000), number of starting

sequences.

Next N lines contain description of input sequences. Each line starts with an

integer L (1 ≤ L ≤ 1000), length of the sequence. It's followed by L integers,

smaller than 100.000.000.

OUTPUT

One line containing ∑ L numbers, the best possible “Solution sequence”

obtainable.

COCI 2009/2010 Task PASIJANS

2. round, 21. november 2009.

Author: Goran Žužić, Luka Kalinovčić

SAMPLE TESTS

input

3
1 2
1 100
1 1

output

1 2 100

input

2
5 10 20 30 40 50
2 28 27

output

10 20 28 27 30 40 50

input

2
3 5 1 2
3 5 1 1

output

5 1 1 5 1 2

