
BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: art

Language: en

Art Collections (art)

While your days as an art thief are long past, this does not mean that you lost interest in contemporary
art. Unfortunately, you’ve been pretty busy lately with BOI preparations. That’s why you have lost
track of how the 𝑁 hottest contemporary art collections (conveniently numbered from 1 to 𝑁) rank
according to value. Since simply asking someone would be quite embarrassing, you will have to resort
to different means: anonymous online rankings.

“Readers also liked: 13 SHOCKING applications
of Dijkstra’s algorithm computer scientists don’t
want you to know about!”

That is, you will repeatedly do the following: You first guess
a ranking of the 𝑁 art collections (based on their value, most
expensive first), then publish this ranking on some web-
site, and finally wait for the collection owners’ complaints
in the comments section. As you don’t want to read each
individual comment, you will only keep track of the total
number of complaints you receive. Fortunately, the owners’
behaviour is very reliable: Each of themwill complain exactly
once for each collection that ranks higher than their own in
your guessed ranking although it doesn’t in the true ranking,
but none will complain about collections you erroneously
guessed to rank lower than theirs. You can assume that the
values of all collections are distinct.
However, as publishing a ranking puts your anonymity at risk,* you only want to publish up to 4000
guessed rankings before finding the correct ranking of the collections. Write a program that helps you
to decide which rankings to publish!

Communication

This is a communication task. You must implement the function void solve(int 𝑁) where 𝑁 is as
described above. For each testcase, this function is called exactly once. Inside solve, you can use the
following other functions provided by the grader:

• int publish(std::vector⟨int⟩ 𝑅) publishes a ranking 𝑅 of the collections on the website. 𝑅 must
be a permutation of the numbers 1 to 𝑁 with the collections you guess to be more expensive
first. The function returns the number of complaints you receive after publishing this ranking.
You can call this function at most 4000 times per testcase.

• void answer(std::vector⟨int⟩ 𝑅) states that you have found the correct ranking 𝑅 of the collec-
tions, in the same format as for publish. You must call answer exactly once; your program will
be automatically terminated afterwards.

If any of your function calls does not satisfy the above constraints, your program will be immediately
terminated and judged as Not correct for the respective testcase. You must not write to standard
output or read from standard input; otherwise you may receive the verdict Security violation!.
You must include the file art.h in your source code. To test your program locally, you can link it with
sample_grader.cpp, which can be found in the attachment for this task in CMS (see below for a
description of the sample grader, and see sample_grader.cpp for instructions on how to run it
with your program). The attachment also contains a sample implementation as art_sample.cpp.

* Definitely because of your distinctive writing style and not because you have a tendency to accidentally sign them with
your name.

1/3



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: art

Language: en

Constraints

We always have 2 ≤ 𝑁 ≤ 4000.

Subtask 1 (𝟓 points). 𝑁 ≤ 6

Subtask 2 (𝟏𝟓 points). 𝑁 ≤ 40

Subtask 3 (𝟏𝟓 points). 𝑁 ≤ 250

Subtask 4 (𝟏𝟓 points). 𝑁 ≤ 444

Subtask 5 (𝟐𝟎 points). 𝑁 ≤ 2000

Subtask 6 (𝟑𝟎 points). No further constraints.

Example Interaction

Consider a testcase with 𝑁 = 3 where collection 1 is the most expensive, followed by 3, and then
collection 2 being the least expensive. First, the grader calls your function solve as solve(3). Then, a
possible interaction between your program and the grader could look as follows:

Your program Return value Explanation

publish({1, 2, 3}) 1 you get a single complaint from the owner of
collection 3

publish({2, 3, 1}) 3 you get two complaints from the owner of
collection 1 and one from the owner of
collection 3

answer({1, 3, 2}) — you are convinced that you have found the
correct ranking

your solution is correct and is accepted

Grader

The sample grader first expects on standard input two lines. The first line should contain the integer
𝑁. The second line should contain a list of 𝑁 space-separated integers, the correct ranking of the
collections in the same format as for publish and answer. Then, the grader calls solve(𝑁) and writes
to standard output a protocol of all grader functions called by your program. Upon termination, it
writes one of the following messages to standard output:
Invalid input. The input to the grader via standard input was not of the above format.
Invalid published ranking. You called publish with invalid parameters.
Too many published rankings. You called publish more than 4000 times.
No answer. The function solve terminated without calling answer.
Wrong answer. You called answer with an incorrect ranking.
Correct: p published ranking(s). You called answer with the correct ranking and there were 𝑝 calls to
publish.
In contrast, the grader actually used to judge your program will only output Not correct (for any of
the above errors) or Correct. Both the sample grader and the grader used to judge your program will
terminate your program automatically whenever one of the above errors occurs or after your program
calls answer.

2/3



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: art

Language: en

Limits

Time: 3 s
Memory: 512MiB

3/3



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: events
Language: en

Event Hopping (events)

What a strange coincidence! After having determined the most valuable
contemporary art collection, you noticed that it is apparently located
somewhere near Lübeck. Since you don’t know its exact location, you
want to gather more information. Luckily, on the day you arrive for this
year’s BOI, the local art community hosts 𝑁 events about contemporary
art. This seems to be just the opportunity you were waiting for.
To plan your visit of these events, you numbered them from 1 to 𝑁 with
the 𝑖-th event starting at time 𝑆𝑖 and ending at time 𝐸𝑖. You want to start
your visit by attending some event 𝑠 and finish your visit at some event
𝑒. As long as you are not attending event 𝑒, you will always attend your
current event until the end* and then immediately switch to a different event that is currently running.
This means that you can switch from event 𝑖 to event 𝑗 if and only if 𝑆𝑗 ≤ 𝐸𝑖 ≤ 𝐸𝑗.
Obviously, switching events too frequently would make you look suspicious. Thus, you want to
determine the minimum number of event switches necessary if you start at event 𝑠 and finish at 𝑒.
Moreover, since you do not yet know when you will arrive in Lübeck and when you will have to leave
for the BOI registration in the evening, you want to determine this for 𝑄 different pairs of starting and
ending events 𝑠 and 𝑒.

Input

The first line of input contains two integers, the number of events 𝑁 and the number of pairs of events
𝑄 for which you want to determine the minimum number of event switches.
Then, 𝑁 lines follow describing the events. The 𝑖-th of these lines contains two integers 𝑆𝑖 and 𝐸𝑖, the
starting and ending time of event 𝑖.
Then, 𝑄 lines follow describing the queries. The 𝑖-th of these lines contains two integers 𝑠𝑖 and 𝑒𝑖,
meaning that you want to determine the minimum number of event switches necessary if you want to
start at event 𝑠𝑖 and end your visit at event 𝑒𝑖.

Output

Your program should output 𝑄 lines. The 𝑖-th of these lines should consist of an integer, the minimum
number of event switches necessary if you start at event 𝑠𝑖 and end your visit at event 𝑒𝑖, or the string
impossible if there is no way to achieve this.

Constraints

We always have 1 ≤ 𝑁, 𝑄 ≤ 100000, 1 ≤ 𝑆𝑖 < 𝐸𝑖 ≤ 10
9, and 1 ≤ 𝑠𝑖, 𝑒𝑖 ≤ 𝑁.

Subtask 1 (𝟏𝟎 points). For every event, you can switch to at most one other event.

Subtask 2 (𝟏𝟎 points). 𝑁 ≤ 1000 and 𝑄 ≤ 100

Subtask 3 (𝟏𝟓 points). 𝑁 ≤ 5000

* It would be rude to leave earlier—though nobody will complain about you being late as you are obviously an important
and busy art critic.

1/2



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: events
Language: en

Subtask 4 (𝟏𝟓 points). 𝑄 ≤ 100

Subtask 5 (𝟐𝟎 points). No event is completely contained in another event, i.e. there are no two events
𝑖 ≠ 𝑗 with 𝑆𝑖 ≤ 𝑆𝑗 < 𝐸𝑗 ≤ 𝐸𝑖.

Subtask 6 (𝟑𝟎 points). No further constraints.

Examples

Input Output

5 2
1 3
2 4
4 7
7 9
3 7
1 4
3 2

2
impossible

8 5
1 2
3 4
1 5
6 7
5 10
10 20
15 20
999999999 1000000000
1 6
1 7
2 4
3 3
5 8

3
4
impossible
0
impossible

In the first example, it is possible to start at event 1 and end at event 4 by switching from event 1
to event 5 and then to event 4, resulting in two event switches. However, there is no way to start at
event 3 and end at event 2 because event 2 ends before event 3.

Limits

Time: 1 s
Memory: 512MiB

2/2



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: vault

Language: en

Uplifting Excursion (vault)

Those events you attended on your arrival day were an exciting opportunity to become familiar again
with the state of the (contemporary) art. And even more: The rumors you heard there revealed that
the art collection you are interested in is stored in a secret underwater vault in the nearby Baltic Sea,
owned by an old Lübeck grain merchant family! In memory of your past as an art thief, you decided to
plan to break into this vault as a relaxing afternoon activity.*

There surely is some pun about phishing hidden
here, but to be honest we’re out of our depth

To break into the vault, you want to use your newly acquired
submarine. Unfortunately, your submarine will need a very
specific amount of uplift 𝐿 when you try to escape from
the crime scene. After all, you don’t want your submarine to
crash into the bottom of the sea or float on the water surface
where the police could catch you easily!
In order to plan your break-in accordingly, you need to know
about the uplift of the art pieces in the vault. Skilled as you
are, you were able to obtain relevant information.† For every
possible uplift ℓ you now know how many art pieces 𝐴ℓ with
that uplift are stored in the vault.
Write a program that uses this information to either calculate
the maximum number of art pieces you can steal such that
their total uplift (obtained by summing the individual uplift of every stolen art piece) is exactly 𝐿 or to
decide that this is impossible.

Input

The first line of input contains two integers 𝑀 and 𝐿, meaning that the uplift of every art piece in the
vault is between −𝑀 and 𝑀 inclusive and that the total required uplift is 𝐿.
The next line contains 2𝑀 + 1 integers 𝐴−𝑀, … , 𝐴𝑀 where 𝐴ℓ describes the number of art pieces with
uplift ℓ in the vault.

Output

Your program should output a single line. This line should consist of an integer, the maximum number
of art pieces you can steal such that their total uplift is exactly 𝐿, or the string impossible if there is
no way to achieve this.

Constraints

We always have 1 ≤ 𝑀 ≤ 300, −1018 ≤ 𝐿 ≤ 1018, and 0 ≤ 𝐴ℓ ≤ 10
12.

Subtask 1 (𝟓 points). 𝑀, 𝐴ℓ ≤ 50

Subtask 2 (𝟏𝟓 points). 𝑀, 𝐴ℓ ≤ 100

Subtask 3 (𝟐𝟎 points). 𝑀 ≤ 30

* A purely hypothetical heist, of course.
† It’s not your fault that their security system uses a weak hash algorithm, is it?

1/2



BOI 2022
Lübeck, Germany

April 28 – May 3, 2022

Day 1
Task: vault

Language: en

Subtask 4 (𝟐𝟎 points). 𝑀 ≤ 50

Subtask 5 (𝟐𝟎 points). 𝑀 ≤ 100

Subtask 6 (𝟐𝟎 points). No further constraints.

Moreover, the following holds: In each of the subtasks 3 to 6 you get 50% of the points awarded for
the respective subtask if you solve all testcases in which 𝐴ℓ = 0 for all ℓ < 0. Inside CMS, this is shown
as “Group 1” of the corresponding subtask.

Examples

Input Output

2 5
2 3 1 1 4

9

3 5
3 1 0 2 0 0 2

impossible

1 5
0 0 6

5

In the first example, you can steal one art piece each with uplift −2, 0 and 1 respectively, two art
pieces with uplift −1, and four art pieces with uplift 2. This results in a total of 1 + 1 + 1 + 2 + 4 = 9
stolen art pieces with a total uplift of 1 ⋅ (−2) + 1 ⋅ 0 + 1 ⋅ 1 + 2 ⋅ (−1) + 4 ⋅ 2 = 5 as required.
In the second example, it is impossible to steal art pieces such that their total uplift is 5.

Limits

Time: 4 s
Memory: 512MiB

2/2


