
Nordic Collegiate Programming Contest
NCPC 2007

October 6th, 2007

Solution sketches

A Phone List

B Cuckoo Hashing

C Parking

D Copying DNA

E Circle of Debt

F Full Tank?

G Nested Dolls

H Shopaholic

I Moogle

Problem A

Phone

Problem author: Øyvind Grotmol

Here are two different methods for solving this problem:

Method A - Use of set First add all phone numbers to a set A. Then for each of the
phone numbers, remove the digits one by one from the end and check if the remainder
is in A. The standard libraries typically provide efficient enough set structures based on
either hashing or a balanced tree.

Method B - Sorting First sort the phone numbers lexicographically. Then check each
phone number if it is a prefix of the next number in the list.

Problem B

Cuckoo Hashing

Problem author: Andreas Björklund

The intended solution is to run the algorithm described in the problem statement. The
only cumbersome step is to detect when the insertion process is trapped in an infinite loop.

A hacker’s solution would be to read all test cases and simulate them in parallel, one
move at a time and after some carefully set maximum time judge every non-finished tables
as “rehash necessary”.

r 5 = r 1

r 2

r 3

r 4

r 7

r 8

r 9

r 1 0

r 0

r 1r 1 1

h 1 (r 0)

h 2 (r 0)

An easier solution follows
from some reasoning. Say you
are trying to place word r0 and
and it gives rise to an infinite
loop. The insertion process
first evicts r1 = T [h1(r0)] and
sets T [h1(r0)] = r0. You
then proceed to place r1 in its
alternative place evicting the
already resident word r2 and
so on. The infinite sequence
(r0, r1, · · ·) is bound to get back to an already moved word rk = rl for some k > l

2

since the number of words are finite. Furthermore, if rk = rl then rk+1 = rl−1 because
now you are trying to put rk = rl back into its original place and there lies rl−1. So
eventually you reach rp = r0 for some p > k and you evict rp+1 from T [h2(r0)] and set
T [h2(r0)] = rp trying the second hash function for r0. But by the same argument as
above you will at some point get rq = rp for some q > p and we are back where we begun,
almost : We again want to put r0 in T [h1(r0)] but the table T is not identical to what it
was the first time! However, a little more thought (exercise!) reveals that at r2p you are
back in exactly the same situation as you were when you first started trying to insert r0.
Thus we have a simple test for infinite loops: when we get back to the original situation
of trying to place r0 in T [h1(r0)] we break proclaiming the existence of an infinite cycle!

Problem C

Optimal Parking

Problem author: Nils Grimsmo

It is obvious that it is not optimal to park left of the left-most store or right of the right-
most store. When parking between these boundaries, you will always have to walk from
the car to the left-most store and back, and then from the car to the right-most and back.
This means you will always walk twice the distance from the left-most to the right-most
store.

Problem D

Copying DNA

Problem author: Nils Grimsmo

This problem can not be solved greedily or with dynamic programming. You must test
every order of building the parts of the target string. However, you can get a big speed-up
from memoising the optimal answers to partial solutions, as many branches in the brute-
force search will end up in the same state. Also, when trying to build a part of the target
string starting at a given position, it will always pay off to build as large a portion of the
string as possible.

3

Problem E

Circle of Debt

Problem author: Andreas Björklund

The solution is by dynamic programming, iterating over the six note and coin
denominations. The idea is to observe that in an optimal solution, notes and coins of
the same denomination cannot be given from more than one person to more than one
person. The reason is that any such transaction can be reduced to one of the same balance
with less transfered money. Thus for each note and coin denomination it is sufficient to
investigate the two cases

1. When one of them gives money of the present denomination to one or both of the
others.

2. When one of them receive money of the present denomination from the other two.

The next observation is that it is sufficient to keep a state consisting of a pair

(a = how much money does Alice got, b = how much money does Bob got)

after k of the six note and coin types have been investigated, i.e. which such pairs (a, b)
are reachable by exchanging money of the first k denominations. Note in particular that
we do not need to keep track of how much money Cynthia has since that is always the
remaining money (their total money minus a + b).

Furthermore, it is only meaningful to consider states which are possible to reach with
the remaining money. Quick feasibility tests include checking if the sum of the remaining
money is enough and if the state is the same as the target state modulo the greatest
common divider of the remaining denominations. Here and otherwise it is wise to start
with smaller denominations first.

To speed things up even further one can employ a meet-in-the-middle approach. Divide
the six denominations in two groups and build two separate pair tables of the above kind,
one with money of the first set of denominations and one with money of the set of the
last denominations. Then combine the two tables to find the optimal transaction.

4

Problem F

Full Tank?

Problem author: Nils Grimsmo

This problem can be solved with shortest-path. The main point is that a node represents
being in a given city with a given tank fill. From a given node, you can go to the
neighbouring nodes representing being in a neighbouring city with the current tank fill
minus what is needed to travel there, and to the neighbouring node representing being in
the current city with 1 more litre of gas on the tank.

Since the graph is sparse and large, you have to implement Dijkstra with a heap to
make sure the solution is fast enough.

Problem G

Nested Dolls

Problem author: Andreas Björklund

H e i g h t

W i d t h

1

2 3 4

5

6

7 8

This problem is a bipartite matching prob-
lem: try to put as many dolls inside another
dolls as possible. However, the standard text
book algorithms for the general bipartite match-
ing problem will most likely be too slow. Instead
one has to figure out what structure an optimal
solution has. It turns out it is possible to find an
optimal nesting by a greedy approach after some
careful measures. Order the dolls after decreas-
ing height and sort ties after increasing width.
Now enumerate the dolls and put each doll in
the doll with lowest width in which it is possible
(it fits and the doll in question is still free). If
several free dolls have the same smallest width
take the tallest one. The reason this works can be seen from a contradiction argument.
Assume we have an optimal nesting which doesn’t have the above property. Then there
exist a doll d of lowest number which is not placed in the doll of lowest width dlow which
would be free at the time d is considered by the greedy algorithm, but is instead (pos-
sibly) placed in another doll dopt?. But then you could easily exchange the doll dwrong

5

possibly contained in dlow for d simply because dwrong fits in dopt? since it is both shorter
and narrower than dlow and hence shorter and narrower than dopt?.

To quickly find the taller free doll with smallest width larger than the present doll you
only need a sorted vector containing the free dolls and binary search. Every time you put
a doll in another you update the corresponding vector element to the smaller dolls’ width.
Observe that the order of the elements in the vector cannot change, you will at worst add
new free dolls at the end of the vector whenever no free doll large enough exists.

Another way is to find the largest set of dolls such that none of them can be put in
another (dashed in figure). This is obviously a lower bound on the number of nested
dolls required but it is also the upper bound, a result which holds generally for partially
ordered sets under the name of Dilworth’s theorem.

Problem H

Shopaholic

Problem author: Truls A. Bjørklund

This problem can be solved with a greedy approach. You will get a discount on a third of
the items, and you want the sum of the costs of these items to be as high as possible. By
buying the three most expensive items at the same time, you get the 3rd most expensive
item for free. Following the same approach for the remaining items will maximise the
overall discount.

This approach is most easily implemented by sorting all items, and summing the cost
of every third item.

Problem I

Moogle

Problem author: Øyvind Grotmol

This problem requires a standard dynamic programming solution (or memoisation,
whichever you prefer to implement). We want to calculate for every 0 ≤ x ≤ h and
2 ≤ y ≤ c the function f(x, y) which is the minimal total interpolation error for the
first x + 1 houses when storing at most y house locations among these. Then basically
f(x, y) = minx−1

i=1 f(i, y − 1) + e(i, x) where e(i, x) is the interpolation error you get for
houses i + 1 through x − 1 when storing only house locations i and x. This e function
must be either pre-calculated or memoised for efficiency.

6

