
NWERC 2017 presentation of solutions

The Jury

NWERC 2017 solutions

NWERC 2017 Jury

▶ François Aubry (Université catholique de Louvain)
▶ Per Austrin (KTH Royal Institute of Technology)
▶ Gregor Behnke (Ulm University)
▶ Thomas Beuman (Leiden University)
▶ Jeroen Bransen (Chordify)
▶ Jim Grimmett (LifeJak)
▶ Timon Knigge (Google)
▶ Robin Lee (Google)
▶ Lukáš Poláček (Google)
▶ Johan Sannemo (Google)
▶ Tobias Werth (Google)
▶ Paul Wild (FAU Erlangen-Nürnberg)

NWERC 2017 solutions

Big thanks to our test solvers

▶ Bjarki Ágúst Guðmundsson (Reykjavík University)
▶ Jan Kuipers (AppTornado)
▶ Jimmy Mårdell (Spotify)
▶ Tobias Polzer (Google)

NWERC 2017 solutions

B: Boss Battle
Problem
In a circular room with n pillars, alternatingly:

▶ You throw a bomb killing anything behind 3 consecutive
pillars.

▶ The boss can move to an adjacent pillar.
Find the minimal number of moves to kill the boss.

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.

2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.

3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.

4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

B: Boss Battle
Solution

1. Just throw bomb i to pillar i + 2 mod n.
2. Each bomb gives a new position where the boss cannot be.
3. When only 3 pillars remain, a single bomb will defeat the boss.
4. Total is thus n − 3 + 1 = n − 2.

Pitfall

1. If n ≤ 3 the answer is 1.

Statistics: 150 submissions, 118 accepted

Problem Author: François Aubry NWERC 2017 solutions

D: Dunglish
Problem
Given a sentence and a dictionary, count the number of possible
translations or in case of a unique one give the actual translation.

Solution

1. First do the counting only.
2. Keep two numbers: the number of possible correct

translations c, and the total number of possible translations t,
both initially 1.

3. For each word in the sentence with ci correct and wi incorrect
translations, do c = c ∗ ci and t = t ∗ (ci + wi).

4. If t equals 1, do another pass to find the solution, otherwise
output c and t − c.

Problem Author: Jeroen Bransen NWERC 2017 solutions

D: Dunglish
Problem
Given a sentence and a dictionary, count the number of possible
translations or in case of a unique one give the actual translation.

Solution

1. First do the counting only.
2. Keep two numbers: the number of possible correct

translations c, and the total number of possible translations t,
both initially 1.

3. For each word in the sentence with ci correct and wi incorrect
translations, do c = c ∗ ci and t = t ∗ (ci + wi).

4. If t equals 1, do another pass to find the solution, otherwise
output c and t − c.

Problem Author: Jeroen Bransen NWERC 2017 solutions

D: Dunglish
Possible pitfalls

1. Generating all possible translations (too slow!)
2. The answer can be as big as 260 (does not fit in int!)

Statistics: 231 submissions, 112 accepted

Problem Author: Jeroen Bransen NWERC 2017 solutions

D: Dunglish
Possible pitfalls

1. Generating all possible translations (too slow!)
2. The answer can be as big as 260 (does not fit in int!)

Statistics: 231 submissions, 112 accepted

Problem Author: Jeroen Bransen NWERC 2017 solutions

H: High Score
Problem
In a game with a, b and c tokens, the players score is:

a2 + b2 + c2 + 7 · min(a, b, c)

Given d wildcard tokens, divide them over a, b and c to get the
maximum score.

Solution

1. Let a ≥ b ≥ c
2. Brute-force over min(a, b, c) and add the rest to a
3. Only needed to check small values of min(a, b, c)

Statistics: 378 submissions, 99 accepted

Problem Author: Johan Sannemo NWERC 2017 solutions

H: High Score
Problem
In a game with a, b and c tokens, the players score is:

a2 + b2 + c2 + 7 · min(a, b, c)

Given d wildcard tokens, divide them over a, b and c to get the
maximum score.

Solution

1. Let a ≥ b ≥ c
2. Brute-force over min(a, b, c) and add the rest to a
3. Only needed to check small values of min(a, b, c)

Statistics: 378 submissions, 99 accepted

Problem Author: Johan Sannemo NWERC 2017 solutions

H: High Score
Problem
In a game with a, b and c tokens, the players score is:

a2 + b2 + c2 + 7 · min(a, b, c)

Given d wildcard tokens, divide them over a, b and c to get the
maximum score.

Solution

1. Let a ≥ b ≥ c
2. Brute-force over min(a, b, c) and add the rest to a
3. Only needed to check small values of min(a, b, c)

Statistics: 378 submissions, 99 accepted

Problem Author: Johan Sannemo NWERC 2017 solutions

G: Glyph Recognition
Problem

▶ Given some points in the plane, and 3 ≤ k ≤ 8, find two
regular k-gons containing all the points between them.

▶ All polygons are centered at the origin.
▶ All polygons have the same orientation.
▶ Over all values of k, maximize the ratio Ainner

Aouter
of polygon areas.

Problem Author: Paul Wild NWERC 2017 solutions

G: Glyph Recognition
Solution

▶ Fix a value of k and let p be one of the points.
▶ Let rk(p) be the circumradius of the k-gon that has p on its

perimeter.
▶ There are at least two ways to compute rk(p).

1. Trigonometry: Let (r, α) be the polar coordinates of p.
▶ Using rotational symmetry, we can assume 0 ≤ α < 2π

k .
▶ Then

rk(p) = r ·
cos(α− π

k)

cos(πk)
.

2. Binary search on the answer:
▶ The vertices of a regular k-gon with radius r are

(r · cos(i · 2πk), r · sin(i · 2πk)), 0 ≤ i < k.

▶ Use some pre-written point-in-polygon test to check if this
polygon contains p.

Problem Author: Paul Wild NWERC 2017 solutions

G: Glyph Recognition
Solution

▶ Fix a value of k and let p be one of the points.
▶ Let rk(p) be the circumradius of the k-gon that has p on its

perimeter.
▶ There are at least two ways to compute rk(p).

1. Trigonometry: Let (r, α) be the polar coordinates of p.
▶ Using rotational symmetry, we can assume 0 ≤ α < 2π

k .
▶ Then

rk(p) = r ·
cos(α− π

k)

cos(πk)
.

2. Binary search on the answer:
▶ The vertices of a regular k-gon with radius r are

(r · cos(i · 2πk), r · sin(i · 2πk)), 0 ≤ i < k.

▶ Use some pre-written point-in-polygon test to check if this
polygon contains p.

Problem Author: Paul Wild NWERC 2017 solutions

G: Glyph Recognition
Solution

▶ Fix a value of k and let p be one of the points.
▶ Let rk(p) be the circumradius of the k-gon that has p on its

perimeter.
▶ There are at least two ways to compute rk(p).

1. Trigonometry: Let (r, α) be the polar coordinates of p.
▶ Using rotational symmetry, we can assume 0 ≤ α < 2π

k .
▶ Then

rk(p) = r ·
cos(α− π

k)

cos(πk)
.

2. Binary search on the answer:
▶ The vertices of a regular k-gon with radius r are

(r · cos(i · 2πk), r · sin(i · 2πk)), 0 ≤ i < k.

▶ Use some pre-written point-in-polygon test to check if this
polygon contains p.

Problem Author: Paul Wild NWERC 2017 solutions

G: Glyph Recognition
Solution

▶ Fix a value of k and let p be one of the points.
▶ Let rk(p) be the circumradius of the k-gon that has p on its

perimeter.
▶ There are at least two ways to compute rk(p).
▶ With all the rk(p) found, the answer can be computed with

two simple loops.

Statistics: 205 submissions, 71 accepted
60% binary search vs. 40% others

Problem Author: Paul Wild NWERC 2017 solutions

G: Glyph Recognition
Solution

▶ Fix a value of k and let p be one of the points.
▶ Let rk(p) be the circumradius of the k-gon that has p on its

perimeter.
▶ There are at least two ways to compute rk(p).
▶ With all the rk(p) found, the answer can be computed with

two simple loops.

Statistics: 205 submissions, 71 accepted
60% binary search vs. 40% others

Problem Author: Paul Wild NWERC 2017 solutions

K: Knockout Tournament
Problem
Set up a knockout tournament such that Dale’s probability of
winning is maximized.
Calculate this maximum probability.

Problem Author: Thomas Beuman NWERC 2017 solutions

K: Knockout Tournament
Solution

1. Suppose that we know the first round pairings.
2. Given i and k it is easy to compute the range of possible

opponents of player i for the k-th match.
3. Let p(k, i) = prob that player i wins his k-th match
4. By definition p(0, i) = a(i)/(a(i) + a(j)) where j is the

opponent of i.
5. For k ≥ 1, we have

p(k, i) = p(k − 1, i) ·
∑

j
p(k − 1, j) · a(i)/(a(i) + a(j))

where j ranges over the possible opponents of i for match k.

Problem Author: Thomas Beuman NWERC 2017 solutions

K: Knockout Tournament
Finding the first round pairings

1. We want face strong players as late as possible.
2. That will maximize the chances of them loosing before.
3. Sort the players by non-decreasing rating.
4. Put Dale first and add byes if necessary.
5. Example: 6 players with ratings 5, 3, 6, 2, 4, 3.

5 bye 2 bye 3 3 4 6

Dale

Statistics: 82 submissions, 43 accepted

Problem Author: Thomas Beuman NWERC 2017 solutions

K: Knockout Tournament
Finding the first round pairings

1. We want face strong players as late as possible.
2. That will maximize the chances of them loosing before.
3. Sort the players by non-decreasing rating.
4. Put Dale first and add byes if necessary.
5. Example: 6 players with ratings 5, 3, 6, 2, 4, 3.

5 bye 2 bye 3 3 4 6

Dale

Statistics: 82 submissions, 43 accepted

Problem Author: Thomas Beuman NWERC 2017 solutions

I: Installing Apps
Problem
Each phone app has a download d and a storage size s. Find the
largest set of apps that can be installed on a phone.

Solution

1. Observation: Fix set S of apps. If S can not be installed in
the order given by (si − di), then it can not be installed at all.

2. Sort all apps by si − di.
3. Knapsack-like dynamic programming: dp(i, k) is the minimum

storage space needed to install k apps on the phone out of the
first i apps in the sorted order.

4. We can reconstruct the solution by remembering extra
information in each field of the DP table.

Statistics: 49 submissions, ? accepted

Problem Author: Lukáš Poláček NWERC 2017 solutions

I: Installing Apps
Problem
Each phone app has a download d and a storage size s. Find the
largest set of apps that can be installed on a phone.

Solution

1. Observation: Fix set S of apps. If S can not be installed in
the order given by (si − di), then it can not be installed at all.

2. Sort all apps by si − di.
3. Knapsack-like dynamic programming: dp(i, k) is the minimum

storage space needed to install k apps on the phone out of the
first i apps in the sorted order.

4. We can reconstruct the solution by remembering extra
information in each field of the DP table.

Statistics: 49 submissions, ? accepted
Problem Author: Lukáš Poláček NWERC 2017 solutions

A: Ascending Photo
Problem
Cut up and re-order an array to make it weakly increasing.
The number of cuts should be minimal.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: greedy?

1. Compress unique heights into a contiguous range of [0,m].

2. Ignore repeated heights, ie. 12223343 → 12343.
3. Now if we only have one of each height, it’s easy:

3.1 The answer is the number of (a, a+1) for which ha +1 ̸= ha+1.

4. This will not work with duplicate heights.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: greedy?

1. Compress unique heights into a contiguous range of [0,m].
2. Ignore repeated heights, ie. 12223343 → 12343.

3. Now if we only have one of each height, it’s easy:

3.1 The answer is the number of (a, a+1) for which ha +1 ̸= ha+1.

4. This will not work with duplicate heights.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: greedy?

1. Compress unique heights into a contiguous range of [0,m].
2. Ignore repeated heights, ie. 12223343 → 12343.
3. Now if we only have one of each height, it’s easy:

3.1 The answer is the number of (a, a+1) for which ha +1 ̸= ha+1.

4. This will not work with duplicate heights.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: greedy?

1. Compress unique heights into a contiguous range of [0,m].
2. Ignore repeated heights, ie. 12223343 → 12343.
3. Now if we only have one of each height, it’s easy:

3.1 The answer is the number of (a, a+1) for which ha +1 ̸= ha+1.

4. This will not work with duplicate heights.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: greedy?

1. Compress unique heights into a contiguous range of [0,m].
2. Ignore repeated heights, ie. 12223343 → 12343.
3. Now if we only have one of each height, it’s easy:

3.1 The answer is the number of (a, a+1) for which ha +1 ̸= ha+1.

4. This will not work with duplicate heights.

✂

x y x y x y
Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

1. We’ll need to use dynamic programming.

2. Let dp[p] be the number of non-cuts beginning with person p.

2.1 If hp is unique,

dp[p] = max(dp[q] +
{
1, if q = p + 1

0, otherwise
∀q | hq = hp + 1)

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

1. We’ll need to use dynamic programming.
2. Let dp[p] be the number of non-cuts beginning with person p.

2.1 If hp is unique,

dp[p] = max(dp[q] +
{
1, if q = p + 1

0, otherwise
∀q | hq = hp + 1)

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

1. We’ll need to use dynamic programming.
2. Let dp[p] be the number of non-cuts beginning with person p.

2.1 If hp is unique,

dp[p] = max(dp[q] +
{
1, if q = p + 1

0, otherwise
∀q | hq = hp + 1)

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

1. We’ll need to use dynamic programming.
2. Let dp[p] be the number of non-cuts beginning with person p.

2.1 If hp is unique,

dp[p] = max(dp[q] +
{
1, if q = p + 1

0, otherwise
∀q | hq = hp + 1)

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

1. We’ll need to use dynamic programming.
2. Let dp[p] be the number of non-cuts beginning with person p.

2.1 If hp is unique,

dp[p] = max(dp[q] +
{
1, if q = p + 1

0, otherwise
∀q | hq = hp + 1)

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

2. Let dp[p] be the number of non-cuts beginning with person p.

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.

4. Note the calculations for a and b are very similar if ha = hb.
5. Transform the list of values for a into the values for b quickly

by only updating entries for a + 1 and b + 1.
6. Complexity: O(N log N).

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

2. Let dp[p] be the number of non-cuts beginning with person p.

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.
4. Note the calculations for a and b are very similar if ha = hb.

5. Transform the list of values for a into the values for b quickly
by only updating entries for a + 1 and b + 1.

6. Complexity: O(N log N).

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

2. Let dp[p] be the number of non-cuts beginning with person p.

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.
4. Note the calculations for a and b are very similar if ha = hb.
5. Transform the list of values for a into the values for b quickly

by only updating entries for a + 1 and b + 1.

6. Complexity: O(N log N).

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Solution: attempt 2

2. Let dp[p] be the number of non-cuts beginning with person p.

2.2 If hp is not unique,

dp[p] = max(dp[q] +
{
1, if q ̸= p + 1 and hq−1 = hp

0, otherwise
. . .)

3. Complexity: O(N2). Too slow! But it’s a start.
4. Note the calculations for a and b are very similar if ha = hb.
5. Transform the list of values for a into the values for b quickly

by only updating entries for a + 1 and b + 1.
6. Complexity: O(N log N).

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Possible pitfalls

1. Greedy. It looks promising, but it’s not going to work.

Statistics: 72 submissions, ? accepted

Problem Author: Jim Grimmett NWERC 2017 solutions

A: Ascending Photo
Possible pitfalls

1. Greedy. It looks promising, but it’s not going to work.

Statistics: 72 submissions, ? accepted

Problem Author: Jim Grimmett NWERC 2017 solutions

F: Factor-Free Tree
Problem
Find a binary tree that has the given sequence ai as its inorder
traversal.
The value in any vertex must be coprime with the values of each of
its ancestors.

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
For any vertex i in the final binary tree, the subtree rooted at i will
be present as a contiguous subsequence l ≤ i ≤ r in the inorder
sequence.

2

2

7

7

15

15

8

8

9

9

5

5

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
The problem has a recursive structure:

▶ The root of the tree will be an ancestor of all vertices and
must therefore be coprime to all other values.

▶ After picking a root, the sequence will be split into two
halves, representing the left and right subtrees of the root,
respectively.

▶ These subtrees/sequences are also factor-free trees, so now we
have split the problem into two smaller subproblems.
(Note: if a sequence has multiple valid roots it does not
matter which one you pick. Proof left as an exercise for the
reader.)

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
How do we find a valid root for a (sub)range? Let’s solve an easier
question first: can ai be the root of l ≤ i ≤ r?

▶ Factorize all numbers in the input. Modified sieve of
Eratosthenes can do this in O(log k) time for a number with k
prime factors.

▶ For each position we can now easily find the nearest positions
that share any prime factor with ai, say li < i and ri > i.

▶ Now position i can be the root of [l, r] if and only if li < l and
r < ri.

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
This suggests the following algorithm (omitting construction):
Function Solve (l, r) is

for i from l to r do
if i can be root of [l, r] then

return Solve (l, i − 1) and Solve (i + 1, r)
end

end
return l ≥ r

end
How fast does this algorithm run? If the root is at the end of the
sequence, the recursion tree will be very skewed with linear work at
each level, and we end up doing O(n2) work (think worst-case
performance of QuickSort).

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
The solution: simply start scanning from both sides simultaneously!
Intuitively, this is faster because:

▶ If the root is near one of the ends of the sequence, we split
into unequal subproblems, but we can do so quickly.

▶ If the root is near the middle, it takes a long time to find, but
we cut into to roughly equisized subproblems.

This algorithm can be proven to run in O(n log n) time, proof
omitted for brevity (but you can ask one of your friendly
neighbourhood jury members if you are interested).

Statistics: 28 submissions, ? accepted

Problem Author: Timon Knigge NWERC 2017 solutions

F: Factor-Free Tree
Solution
The solution: simply start scanning from both sides simultaneously!
Intuitively, this is faster because:

▶ If the root is near one of the ends of the sequence, we split
into unequal subproblems, but we can do so quickly.

▶ If the root is near the middle, it takes a long time to find, but
we cut into to roughly equisized subproblems.

This algorithm can be proven to run in O(n log n) time, proof
omitted for brevity (but you can ask one of your friendly
neighbourhood jury members if you are interested).

Statistics: 28 submissions, ? accepted

Problem Author: Timon Knigge NWERC 2017 solutions

J: Juggling Troupe
Problem
Jugglers standing in a row throw balls to their neighbours while
they have more than a single ball. Give the final configuration.

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.

2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?

3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.

4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.

6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.

7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Idea

1. Simplify the problem.
2. What if we only have one 2 in the input at position i?
3. Let L < i be the index of the last 0 to the left of i.
4. Let R > i be the index of the first 0 to the right of i.

.0

L
0

R
2

i
1 1 1 1 1

5. The result will have a 0 at position L + R − i.
6. All other values in [L,R] are 1’s.
7. Other indexes remain unchanged.

.
L R

0

L + R − i
1 1 1 1 1 1 1

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.

2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.

3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.

4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.

5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).

6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.

7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Solution

1. Solve the 2’s individually.
2. Keep track of the positions of the zeros in a BST.
3. For each position i with a 2, query the BST for L and R.
4. Keep two sentinel zeros at positions −1 and n.
5. Remove L and R (don’t remove sentinels).
6. Add a zero at L + R − 1 if it does not contain another 2.
7. Output 0’s for indexes in T and 1’s elsewhere.

Statistics: 49 submissions, ? accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {4}

0 1 2 3 4 5 6 7
0 1 2 1 1 0 2 1 2 0

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 4, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 2 1 1 0 2 1 2 0

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 4, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 2 1 1 0 2 1 2 0

L Ri

L + R − i = −1 + 4− 1 = 2

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 2, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 1 0 1 1 2 1 2 0

L Ri

L + R − i = −1 + 4− 1 = 2

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 2, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 1 0 1 1 2 1 2 0

L Ri

L + R − i = 2 + 8− 5 = 5

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 5, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 0 1 2 0

L Ri

L + R − i = 2 + 8− 5 = 5

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 5, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 0 1 2 0

L Ri

L + R − i = 5 + 8− 7 = 6

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 6, 8}

-1 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 0 1 0

L Ri

L + R − i = 5 + 8− 7 = 6

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 6, 8}

0 1 2 3 4 5 6 7
1 1 1 1 1 1 0 1

Statistics: FIXME submissions, FIXME accepted

Problem Author: François Aubry NWERC 2017 solutions

J: Juggling Troupe
Example
Zeroes = {−1, 6, 8}

0 1 2 3 4 5 6 7
1 1 1 1 1 1 0 1

Statistics: FIXME submissions, FIXME accepted
Problem Author: François Aubry NWERC 2017 solutions

C: Connect the Dots
Problem
Draw minimum line segments to cover 16 points in order, without
lifting your pen.

1 2 3 4

10 11 12 5

9 16 6 13

8 7 15 14

Problem Author: Johan Sannemo NWERC 2017 solutions

C: Connect the Dots
Greedy solution
Let S(i) be the set of angles in which you could enter point i in
order to minimize number of segments to get to point i. It turns
out that this set is a single interval.
Suppose we go from i to i + 1. To compute S(i + 1), consider the
ways in which we could leave point i:

▶ Go directly from point i to i + 1. If this is possible you should
always do it.

Problem Author: Johan Sannemo NWERC 2017 solutions

C: Connect the Dots
Greedy solution
If this is not possible with any of the angles in S(i), we need to go
through i, then start a new line towards i + 1. Then S(i + 1) can
be computed by considering the extremes:

▶ Continuing arbitrarily far from i along the angle that is the
first endpoint of S(i).

▶ Continuing arbitrarily far from i along the angle that is the
second endpoint of S(i).

This will give you the corresponding set S(i + 1).

Problem Author: Johan Sannemo NWERC 2017 solutions

C: Connect the Dots
Possible pitfalls
Note that S(i) may either be a single angle, or a half-open interval.

Problem Author: Johan Sannemo NWERC 2017 solutions

C: Connect the Dots
Possible pitfalls
Every segment should pass through two points? No (sample 2)

1 2 3 4

8 9 10 11

7 15 16 12

6 14 13 5

Statistics: 62 submissions, ? accepted

Problem Author: Johan Sannemo NWERC 2017 solutions

C: Connect the Dots
Possible pitfalls
Every segment should pass through two points? No (sample 2)

1 2 3 4

8 9 10 11

7 15 16 12

6 14 13 5

Statistics: 62 submissions, ? accepted

Problem Author: Johan Sannemo NWERC 2017 solutions

E: English Restaurant
Problem
Random groups of sizes between 1 and g people arrive at the
restaurant. Each group occupies the smallest table that fits the
group, or leaves if there is no such table.
Find the average occupancy of after t groups have arrived.

Solution, part 1

1. Sort tables by capacity.
2. Calculate expected occupancy E(i, j) for consecutive intervals

of tables between i and j, conditioned upon the interval being
fully occupied and the rest being empty.

3. Add t virtual tables of capacity g, holding the people leaving
restaurant.

Problem Author: Chidambaram Annamalai and Lukáš Poláček NWERC 2017 solutions

E: English Restaurant
Solution, part 2

4. Dynamic programming, from smallest intervals to the longest.
Pick the last table k occupied in an interval [i, j]. Intervals
[i, k − 1] and [k + 1, j] have been occupied before. There are(j−i+1

k−1

)
ways of interleaving these two parts.

5. Use consecutive occupancies to calculate non-consecutive
occupancies: F(k, ℓ) is the average occupancy of the first k
tables when ℓ of those tables are occupied.

6. F is calculated similarly to E.
7. Final answer is F(n + t, t) – expected occupancy of the n + t

tables when t of them are occupied.

Statistics: 8 submissions, ? accepted

Problem Author: Chidambaram Annamalai and Lukáš Poláček NWERC 2017 solutions

E: English Restaurant
Solution, part 2

4. Dynamic programming, from smallest intervals to the longest.
Pick the last table k occupied in an interval [i, j]. Intervals
[i, k − 1] and [k + 1, j] have been occupied before. There are(j−i+1

k−1

)
ways of interleaving these two parts.

5. Use consecutive occupancies to calculate non-consecutive
occupancies: F(k, ℓ) is the average occupancy of the first k
tables when ℓ of those tables are occupied.

6. F is calculated similarly to E.
7. Final answer is F(n + t, t) – expected occupancy of the n + t

tables when t of them are occupied.

Statistics: 8 submissions, ? accepted

Problem Author: Chidambaram Annamalai and Lukáš Poláček NWERC 2017 solutions

Random numbers produced by the jury

836 number of posts made in the jury’s forum.
(NWERC 2016: 1081)

894 commits made to the problem set repository.
(NWERC 2016: 964)

347 number of lines of code used in total by the shortest judge
solutions to solve the entire problem set.
(NWERC 2016: 370)

23.7 average number of jury solutions per problem, including
incorrect ones.
(NWERC 2016: 20.6)

NWERC 2017 solutions

