Convex hull trick

Recurrence:
dp[ij=min(dpfi],dp[j]+b[j]*a[i]);

Sample problem: you have N cities on a straight line, you have to deliver a mail from last city to
the first one as fast as possible, and also you have a mailman in every city; every mailman has
his own speed and also his own penalty time which he spends on preparing to travel after
receiving a mail.

Naive implementation gives you O(N”2). Expression in brackets can be considered as linear
function on afi]. This observation allows us to speed up our solution.

In case b[j]>=b[j+1], afi]<=a[i+1] it is possible to reach O(N). In case some of these conditions
are missing you can still reach O(N*log(N)).

The idea is to keep lower envelope of given set of linear functions, described by our formula.

Considering it as geometry problem - In naive solution you are looking at y-values of all lines for
given x, and you want to consider only one line, for which you know that it is best one for given
position.

Easy way to store it is making a list of lines which belong to this envelope, sorted in order they
appear in envelope.

In case you are adding lines in order of increasing slope - it is possible to update a tail of
envelope in linear time (by removing lines which are not in envelope anymore, in linear time,
and then adding a new line). In case you have a[i]>a[i-1], you can keep pointer on the line which
is a part of envelope at the point of current query.

To check that you have to remove last line from envelope, you should find an intersection
between new line and a line from envelope. If intersection belongs to envelope - everything is
fine, otherwise you should remove a line from envelope.

In case some conditions are missing - you need more complicated data structures (list of
envelopes, pair of sets, cartesian tree or any other structure you like) to store/update envelope

and binary search to answer queries.

Link to read more: http://wcipeg.com/wiki/Convex hull trick.

Some more problems: check provided contest :)


http://wcipeg.com/wiki/Convex_hull_trick

Knuth’s optimization

Recurrence:

dpliffi=min(dpfil[i], dp[il[k]+dp[k][j]+cost[i[i]);

Sufficient Condition of Applicability:

Cutfiffj-1]<=Cut[ilfj]<=Cutfi+1]f],
where Cut[i]j] is first position of k for which we can get best value of dp[i][j].

Original problem is about building optimal binary search tree. You task is to build a binary
search tree which provides the smallest possible search time (or expected search time) for a
given sequence of accesses (or access probabilities).

Number of possible binary search trees is exponential, therefore full search isn’t going to help
you much. Obvious DP solution is O(N"3) - DP over segments of input sequence, DPJl][r] is
answer for subarray [I..r].

In 1971 Knuth provided a way to improve it to O(N*2). While in original algorithm you are
checking all possible positions of Cutfl]J[r], you can actually check only some smaller range,
bounded by Cut[i]J[j-1] and Cutfi+1][j]. In order to show that given optimization improves running
time to O(N*2) you can write down a telescoping sum, where number of operations for
particular state (i,j) can be described as Cut[i+1][jJ-Cutfi][j-1]+1.

Almost all addends in this sum will be repeated twice - Cut[i][j] is used when calculating
DPJi-1][j] and DP[ij[j+1], and it will be canceled (unless i=1 or j=n). Remaining part is O(N"2).

When solving problems during a contest, in some cases it makes sense to make an assumption
about applicability of Knuth’s optimization if you are facing troubles with proving it. In this case
you can easily stress-test your solution with naive O(N*3) DP.



Divide and Conquer Optimization

Recurrence:

dplifli=min(dpfil[f],dp[i-1][k]+cost[k][j]);

Sufficient Condition of Applicability:

CutfiJ[j]<=Cutfi][j+1]

Example of a problem: you have to split sequence N letters into K consecutive groups for keys

of cell phone keyboard. You know frequency of every letter, and also you know that you’ll have
to press a key x times to type a letter which is placed on x-th position on given key Your task is
to minimize total number of you times you have to press a key in order to type whole text.

Naive idea is to try all possible values of k. Once again, there is a way to improve it by using
provided condition. Let’s say we know that Cut[10][50] is equal to 25. Now if we are calculating
Cut[10][51] - it makes no sense to try k=24, because we know that Cut[10][51]>=Cut[10][50].

Let’s extend this idea to whole algorithm. If we have to solve our problem for range [I..r] on level
i - let’s divide this range in two parts by some position g, and then use Cut[iJ[q] as a bound
when solving range [l..q-1] or [q+1..1].

In order to show that it improves complexity to O(N*2*log(N)) you can write down scheme of
solving particular level in a tree-style. Resulting tree will have O(log(N)) levels, and for every

level total number of operations is O(N).

A problem to practice: http://codeforces.com/contest/321/problem/E



http://codeforces.com/contest/321/problem/E

