
A B C D E F G H I J

Long Contest Editorial
November 17, 2015

Moscow International Workshop ACM ICPC, MIPT, 2015

A B C D E F G H I J

A. Bus Routes

Count the number of graphs on n vertices such that:

the graph is connected
the graph contains at least one cycle
each edge can be colored into one of m colors

The graphs are equivalent iff the set of their edges coincide as well
as their colors.

A B C D E F G H I J

A. Bus Routes

We have to count m-colored connected graphs, and then subtract
the number of m-colored trees.
From Cayley’s formula, the number of m-colored trees is nn−2mn−1.
Let’s count the number of m-colored connected graphs (in the
following we will omit m-colored).
Denote connn the number of connected graphs on n vertices. By
considering every disconnected graph, and its component
containing vertex 1, we obtain the formula:

connn = (m + 1)
n(n−1)

2 −
n−1∑
k=1

(
n − 1

k − 1

)
connk(m + 1)

(n−k)(n−k−1)
2

Unfortunately, straightforward calculation of this recurrence takes
too long.

A B C D E F G H I J

A. Bus Routes

We have to use exponential generating functions.

Definition
An exponential generating function f (x) of a sequence a0, a1, . . . is
defined as a formal sum

f (x) =
∞∑
k=0

xk
ak
k!

Let f (x) be the exp. g. f. of numbers of connected m-colored
graphs, and g(x) be the exp. g. f. of numbers of all m-colored
graphs.

Observation

g(x) = ef (x)

A B C D E F G H I J

A. Bus Routes

Proof of the observation

ef (x) =
∞∑
k=0

f (x)k

k!
=

∞∑
k=0

1

k!

∑
a1,...,ak>0

xa1+...+ak
conna1 . . . connak

a1! . . . ak !

=
∞∑
k=0

1

k!

∑
06a16...6ak

(
a1 + . . .+ ak
a1, . . . , ak

)
xa1+...+ak

conna1 . . . connak
(a1 + . . .+ ak)!

=
∞∑
s=0

x s
∞∑
k=0

1

k!

∑
a1+...+ak=s

(
s

a1, . . . , ak

)
conna1 . . . connak

s!

The coefficient at x s is exactly the number of ways to partite s
vertices into subsets and build a connected graph on each of them,
divided by s!.

A B C D E F G H I J

A. Bus Routes

Corollary

f (x) = ln g(x), or f ′(x) = 1
g ′(x) .

We know g(x), and therefore g ′(x). It suffices to find several first
coefficients of an inverse function to g ′(x).

A B C D E F G H I J

A. Bus Routes

Suppose we know first k coefficients of the inverse function.
That is, f (x) ≡ A (mod xk), f −1(x) ≡ B (mod xk),
AB ≡ 1 (mod xk).
We would like to find next k coefficients. That is,
f (x) ≡ A+ Cxk (mod x2k), f −1 ≡ B + Dxk (mod x2k),
(A+ Cxk)(B + Dxk) ≡ 1 (mod x2k) (here A, B , C , D —
polynomials of degree k − 1). We have to find D.
Transform: AB + (AD + BC)xk ≡ 1 (mod x2k).
Since AB ≡ 1 (mod xk), we can write AB ≡ 1 + Zxk (mod x2k).
It follows that AD ≡ −(Z + BC) (mod xk).
Multiply both sides by B , obtain D ≡ −B(Z + BC) (mod xk).
To sum up, we can find D by O(1) multiplications of polynomials
of degree k − 1.
If we start from k = 1, we will find n-th coefficient of f −1 in
O(log n) iterations, and in O(n log n) time (if we use FFT for
polynomial multiplication).

A B C D E F G H I J

A. Bus Routes

How do we use FFT modulo a prime number?
Notice that P = A2k + 1, where 2k > n.
Find ω such that ω2k ≡ 1 (mod P), ω2k 6≡ 1 (mod P). It exists
since there exists a prime root g such that g x ≡ m (mod P) is
solvable for all m from 1 to P − 1.
Note that we can use ω as a unity root of order 2k without
changing the formulas.

A B C D E F G H I J

B. The Robot on the Plane

A robot stands in the cell (x , y) of the grid. On i-th move he can
move 3i−1 cells in one of four cardinal directions, or stays still.
Construct any way to reach the cell (x ′, y ′), or determine that this
is impossible.

A B C D E F G H I J

B. The Robot on the Plane

Denote δx = x ′ − x , δy = y ′ − y , where (x ′, y ′) is the target cell,
(x , y) is the current cell.
All the steps starting from the second one change coordinates by
multiples of 3, therefore after the first step δx and δy must be
divisible by 3.

If δx and δy are initially divisible by 3, then, clearly, the only
possible first step is to stand still.
If both δx and δy are not divisible by 3, then there is no way to
make them both divisible by 3 in one step, so there’s no way.
Otherwise, there is a unique move that makes both
coordinates divisible by 3.

A B C D E F G H I J

B. The Robot on the Plane

After making the first move, we can divide δx and δy by 3, since all
the moves became three times longer. Proceed until δx = δy = 0.
Complexity is O(log(x + y + x ′ + y ′)).

A B C D E F G H I J

C. Autopilot System

We are performing random walk on a tree. With probability pi we
move to the vertex vi , otherwise we move to a random neighbour
and pay 1 coin. Find expected number of coints to pay while
moving from vertex 1 to vertex n.

A B C D E F G H I J

C. Autopilot System

If
∑

pi = 1, then the answer is:

vertex n is not a teleport vertex — answer is ∞
vertex n is a teleport vertex vi — answer is 1/pi

A B C D E F G H I J

C. Autopilot System

Fix vertex n as the root. Compute following values:

pupv , eupv — probability to move to parent of v from v
without teleporting, and average number of coins to pay given
this condition
preachv , ereachv — probability to reach the root from v
without teleporting, and average number of coins to pay given
this condition

These values can be computed using simple DFS or two.
After this, for every teleport vertex we can write equation
ansvj = ereachvj +

∑k
i=1 piansvi . Solve this system using Gauss

elimination.
Complexity O(n +m3).

A B C D E F G H I J

D. Immortality of Frog

We are given n segments [li ; ri], with 1 6 li 6 ri 6 n. Every
position k is contained in at most 10 segments which are different
from [1; n] (otherwise we have to return 0). Find the number of
permutations pi such that i ∈ [lpi ; rpi].

A B C D E F G H I J

D. Immortality of Frog

For each position k construct a list Lk of indices i such that
k ∈ [li ; ri], and [li , ri] 6= [1; n] (call such segments bad).
We will consider positions from left to right, and for each position
will either choose bad segment [lpk ; rpk] that contains k , or assign k
to one of not-bad segments.
Call a segment [li ; ri] fulfilled if we have already chosen k such that
pk = i .

A B C D E F G H I J

D. Immortality of Frog

Count DP dpk,Sk , where Sk ⊆ Lk — number of ways to choose p1,
. . . , pk — segments for each of the positions 1, . . . , k such that all
the segments with ri < k are fulfilled, and Sk is the set of fulfilled
segments among all other bad segments.
On every transition from k and k + 1, we either choose i ∈ Sk+1

and put pk+1 = i , or assign k to one of [1; n]-segments.
Also, if for some state dpk,Sk a segment [li , ri] with ri = k is not in
Sk (that is, a segment that is going to finish right now is not
assigned with any position k), we have to skip the state and not
make any transitions to the next layer.
Finally, we multiply the answer by z!, where z is the number of
[1, n]-segments, since we have chosen exactly z positions to put
into [1, n]-segments
Complexity is O(n2k)

A B C D E F G H I J

E. Land of farms

We are given an n ×m grid, with several connected regions
(ancient farms) in it. We have to choose a subset of cells in the
grid, and if we have chosen a cell of an ancient farm, we have to
include all other cells of the same ancient farm as well. Maximize
the number of connected components of the subset.

A B C D E F G H I J

E. Land of farms

Choose a subset of ancient farms which we will include in the
subset. We have to choose which other cells we include in the
subset in the optimal arrangement.

We can’t include the cells belonging to one of excluded ancient
farms.
Also, it’s clearly not optimal to include cells adjacent to
included ancient farms, since this doesn’t increase the number
of components.

A B C D E F G H I J

E. Land of farms

Out of other cells, we can choose subset arbitrarily. Clearly, there is
an optimal answer such that each component made of non-ancient
farms’ cells consists of a single cell.
The number of maximal pairwise non-adjacent cells can be found
as the independence number of a bipartite graph. It can be
expressed using the size of maximal matching, which in turn can be
found using Kuhn’s algorithm.
Complexity is O(2d(nm)3), where d 6 10 is the number of ancient
farms (in practice much faster).

A B C D E F G H I J

F. Matching Compressed String

We are given a compressed string and a DFA (deterministic finite
automaton). Determine if the DFA accepts the compressed string.

A B C D E F G H I J

F. Matching Compressed String

For convenience, introduce the “sink” state, and add transitions to
sink state for all non-existent transitions in the original DFA.
Parse the compressed string, for each sub-expression s compute a
function ϕ(v) that maps a DFA state v to the state
ϕ(v) = f (sn, f (sn−1, . . . f (s1, v) . . .)) (that is, start in the state v
and feed the expression s, return the resulting state).

A B C D E F G H I J

F. Matching Compressed String

If the expression is a letter c , simply map every state v to
f (c , v).
If the expression is concatenation of two or more expressions,
construct ϕ as the composition of corresponding functions for
sub-expressions.
If the expression is of the form n(sub-expression), use binary
exponentiation to obtain n-th power of the function for the
sub-expression.

Complexity is O(|s|n log n).

A B C D E F G H I J

G. Alice’s Classified Message

Encode a string as follows:

start with i = 0

find maximal T such that s[k ; k + T) = s[i ; i + T) for some
0 6 k < i and maximal possible T (for equal T , choose
minimal k)
if T exists, append T and k to the code, add T to i

else, append −1 and si to the code, add 1 to i

A B C D E F G H I J

G. Alice’s Classified Message

Denote si the suffix of s starting at i-th character.
We have to answer queries of sort “find maximal LCP (longest
common prefix) among pairs (si , sk) for all 0 6 k < i”.
Construct the suffix array of s, and find LCP’s of consecutive
suffixes. To find length of the longest LCP of (si , sk) for 0 6 k < i ,
find closest positions i−, i+ to i in the suffix array, such that
i−, i+ < i , and use RMQ (minimal LCP of consecutive suffix pairs)
to find maximal length.
Find minimal k such that corresponding RMQ is maximal. This can
be done, for example, using additional RMQ which stores indices of
already visited suffixes.
Complexity is O(n log2 n).

A B C D E F G H I J

H. Frog and String

Construct a string of n characters using first k Latin letters such
that it contains exactly m distinct subpalindromes.

A B C D E F G H I J

H. Frog and String

Observation
Number of distinct subpalindromes of string of length n does not
exceed n.

Proof
Proof by induction. We assert that there is at most one
suffix-palidnrome of s that has not been occured before.
Assume the opposite, let a and b be two longest suffix-palindromes
that have not been occured before, |a| > |b|.
But since a is a palindrome, b is also a prefix of a, so b occurs
earlier in the string.
We arrived at a contradiction, thus the original statement is true.

Thus, if m > n, the answer doesn’t exist.

A B C D E F G H I J

H. Frog and String

Consider several cases:

If k = 1, then, clearly, m must be equal to n.
If n = 1, m must be 1.
If n = 2, m must be 2.
If k > 3, m must be in between 3 and n. The answer looks as
follows: �abcabc...(last symbol repeated appropriate number of
times)

A B C D E F G H I J

H. Frog and String

The only case is k = 2, n > 2. If n is small (say, not greater than
12), solve the problem with brute-force.
Else, we can construct a block t of size 6 such that we can repeat
it arbitrary number of times and the number of distinct
subpalindromes stays equal to 8. To obtain greater answers,
carefully append appropriate number of equal characters.

A B C D E F G H I J

I. The Shields

We are given n points in the plane, and m figures obtained by
cutting a strip of width wi from the middle of a rotated square
sized di (see picture in the problem statement). For each figure,
count the number of points inside the figure or on its border.

A B C D E F G H I J

I. The Shields

Each figure consists of two disjoint right-angled isosceles triangles.
Let’s count the number of points inside each triangle separately and
sum them for every figure. Consider each type of triangle separately.
Transform coordinates so that each triangle is given by a set of
inequalities x > xi , y > yi , x + y 6 si .
A triangle can be represented as a complement of a trapezoid
x + y 6 si , xi 6 x 6 si − yi to a trapezoid y < yi , xi 6 x 6 si − yi .
For trapezoids of each type we can count number of points inside
each trapezoid off-line with sweep-line and RSQ structure in
O(n log n) time (using a suitable coordinate transformation once
more).
Therefore, the whole problem can be solved in O(n log n) time.

A B C D E F G H I J

J. Kingdom of Tree

We are given a weighted tree. We can choose number ri in each
vertex i . Road (i , j) is covered if ri + rj > w(i , j), where w(i , j) is
the weight of edge between i and j . Minimize

∑
ri∑

edge (i,j) is covered w(i ,j) .

A B C D E F G H I J

J. Kingdom of Tree

Suppose that we want to cover all edges, and minimize sum of rv .
Suppose that a leaf vertex v has non-zero rv , and its only
neighbour is u. We can increase ru by rv , and set rv to 0 without
changing the sum of r ’s. Thus, all leaves must have rv = 0.
Proceeding in a similar manner, we arrive at the following greedy
algorithm:

Start DFS from arbitrary vertex.
For each vertex v , set rv so that to cover all edges going to
its children in the DFS tree (assuming they can be already
partially covered).

A B C D E F G H I J

J. Kingdom of Tree

Now, we want to minimize
∑

ri∑
edge (i,j) is covered w(i ,j) .

Binary search on the answer. We want to check if the resulting
fraction is at most x .
This holds iff min

∑
ri − x ·

∑
edge (i ,j) is covered w(i , j) 6 0.

Thus, we will try to minimize
P =

∑
ri − x ·

∑
edge (i ,j) is covered w(i , j).

A B C D E F G H I J

J. Kingdom of Tree

Count dpv ,l — the minimal value of the P in the subtree of v over
all configurations with rv = l , for convenience we will not account
for rv in values of dpv ,l .
Consider adding a new subtree of v rooted at u, how should we
update dpv ,l?
We can choose not to cover the edge (v , u), then the value of dpv ,l
should be updated with dpv ,l + dpu,l ′ + l ′ for all l ′.
If we choose to cover the edge (v , u), then for each pair of values
dpv ,l and dpu,r we should update dpv ,max(l ,w(u,v)−r) with
dpv ,l + dpu,r + r − x · w(v , u).

A B C D E F G H I J

J. Kingdom of Tree

It can be shown that the number of different l among dpv ,l does
not exceed the size of the subtree rooted at v (if we don’t
introduce unnecessary states).
Indeed, for a leaf vertex there is only l = 0.
For an inner vertex v , the value of l is either 0, or w(u, v)− r for
some child u and r for the existing state dpu,r .
The total number is 1 + total size of the subtrees, which is exactly
the size of the subtree rooted at v .
It follows that these solution works in O(n2 log n log−1 ε). Here
O(n2) is the total number of transitions (since merging two
subtrees of size a and b requires ab transitions), log n is for set
operations (since the set of necessary l in dpv ,l is sparse), and
log−1 ε is the number of binary search iterations.

