
CERC 2014: Presentation of solutions

Jagiellonian University

November 20, 2014

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 1 / 1



Some numbers

Total submits: 1002
Accepted submits: 312

First accept: 00:07:56, problem C
University of Zagreb

(Stjepan Glavina, Ivan Katanic, Gustav Matula)

Last accept: 4:59:44, problem F
Eötvös Loránd University

(Attila János Dankovics, András Mészáros, Ágoston Weisz)

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 2 / 1



Some numbers

Total submits: 1002
Accepted submits: 312

First accept: 00:07:56, problem C
University of Zagreb

(Stjepan Glavina, Ivan Katanic, Gustav Matula)

Last accept: 4:59:44, problem F
Eötvös Loránd University

(Attila János Dankovics, András Mészáros, Ágoston Weisz)

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 2 / 1



Some numbers

Most determined team:

University of Debrecen
(Martin Kelemen, Róbert Tóth, Attila Zabolai)

11 attempts at problem D

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 3 / 1



Problem H Good morning!

Problem H
Good morning!

Submits: 145
Accepted: 73

First solved by:
Masaryk University

(Jaromir Kala, David Klaska, Tomáš Lamser)
00:13:43

Author: Adam Polak

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 4 / 1



Problem H Good morning!

SOLVED!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 5 / 1



Problem C Sums

Problem C
Sums

Submits: 241
Accepted: 68

First solved by:
University of Zagreb

(Stjepan Glavina, Ivan Katanic, Gustav Matula)
00:07:56

Author: Damian Straszak

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 6 / 1



Problem C Sums

Use the formula:

k + (k + 1) + ...+ (k + d − 1) =
(2k + d − 1)d

2

To end up with equation:

(2k + d − 1)d = 2N

Want to solve it for k , d ∈ N, d ≥ 2.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 7 / 1



Problem C Sums

(2k + d − 1)d = 2N

Check all divisors d ≥ 2 of 2N .

Easy to do in O(
√
N) time.

“IMPOSSIBLE” if and only if N = 2r

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 8 / 1



Problem D Wheels

Problem D
Wheels

Submits: 123
Accepted: 68

First solved by:
University of Warsaw

(Patryk Czajka, Micha l Makarewicz, Jan Kanty Milczek)
0:13:26

Author: Lech Duraj

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 9 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

Machine not jammed ⇔ The graph is bipartite.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

Machine not jammed ⇔ The graph is bipartite.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

Machine not jammed ⇔ The graph is bipartite.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

If a wheel is turning, the whole connected component is turning.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

We compute the connected component of node 1. Wheels of even
distance are turning clockwise, other – counterclockwise

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem D Wheels

We have n wheels on the plane. The wheel 1 is turning at 1 turn per
minute. What other wheels are turning, and how fast?

We construct a graph of n nodes – nodes x and y are connected by an
edge iff the wheels x and y touch each other.

Every point on the boundary is travelling the same distance per minute –
exactly 2πR1. Therefore the wheel i makes R1/Ri turns per minute.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 10 / 1



Problem I Bricks

Problem I
Bricks

Submits: 195
Accepted: 50

First solved by:
University of Wroclaw

00:39:27

Author: Damian Straszak

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 11 / 1



Problem I Bricks

View it as a geometrical problem on a plane.

Start at (0, 0),

white brick means “go one step right”,

black brick means “go one step up”.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 12 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 13 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 14 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 15 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 16 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 17 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Goal: count the number of intersection points with integral coordinates!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 18 / 1



Problem I Bricks

Example: 2W, 3B, 1W, 3B, 4W, 2B, 1W

Goal: count the number of intersection points with integral coordinates!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 18 / 1



Problem I Bricks

How to count them?

There are at most n of them.

For each horizontal/vertical segment calculate the potential
intersection.

Avoid floating point arithmetic.

Complexity O(n).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 19 / 1



Problem F Vocabulary

Problem F
Vocabulary

Submits: 91
Accepted: 22

First solved by:
University of Zagreb

(Stjepan Glavina, Ivan Katanic, Gustav Matula)
00:55:23

Author: Adam Polak

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 20 / 1



Problem F Vocabulary

Problem:
You are given three strings, some of the characters are turned to question
marks. In how many ways you can substitute question marks with letters
so that the three strings are in strict lexicographical order?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 21 / 1



Problem F Vocabulary

First: to make things easier, if the strings are not of the equal length, pad
them with ’a’-1.

For each string, for each its suffix, precompute the number of different

ways it can be substituted (basically 26<number of ? on the suffix>).

For each suffix, precompute the number of ways the first and the second
string can be substituted (ignoring the third string) so that these two
suffixes are in strict lexicographical order.
Do the analogous precomputing for the second and the third string.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 22 / 1



Problem F Vocabulary

First: to make things easier, if the strings are not of the equal length, pad
them with ’a’-1.

For each string, for each its suffix, precompute the number of different

ways it can be substituted (basically 26<number of ? on the suffix>).

For each suffix, precompute the number of ways the first and the second
string can be substituted (ignoring the third string) so that these two
suffixes are in strict lexicographical order.
Do the analogous precomputing for the second and the third string.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 22 / 1



Problem F Vocabulary

First: to make things easier, if the strings are not of the equal length, pad
them with ’a’-1.

For each string, for each its suffix, precompute the number of different

ways it can be substituted (basically 26<number of ? on the suffix>).

For each suffix, precompute the number of ways the first and the second
string can be substituted (ignoring the third string) so that these two
suffixes are in strict lexicographical order.
Do the analogous precomputing for the second and the third string.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 22 / 1



Problem F Vocabulary

Now, iterate over i from 0 to n − 1 and consider the case when first i
characters of all the three strings are equal.

There must be some difference on i-th position – there are three cases:

A[i ] < B[i ] < C [i ],

A[i ] < B[i ] = C [i ],

A[i ] = B[i ] < C [i ].

The number of ways the prefix can be substituted is simply

26<number of positions with three ?> before the first position where
non-? characters are different, and 0 after this position.
The number of ways the suffixes can be substituted can be easily
computed from precomputed values.
The whole solution runs in O(n) time.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 23 / 1



Problem F Vocabulary

Now, iterate over i from 0 to n − 1 and consider the case when first i
characters of all the three strings are equal.
There must be some difference on i-th position – there are three cases:

A[i ] < B[i ] < C [i ],

A[i ] < B[i ] = C [i ],

A[i ] = B[i ] < C [i ].

The number of ways the prefix can be substituted is simply

26<number of positions with three ?> before the first position where
non-? characters are different, and 0 after this position.
The number of ways the suffixes can be substituted can be easily
computed from precomputed values.
The whole solution runs in O(n) time.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 23 / 1



Problem F Vocabulary

Now, iterate over i from 0 to n − 1 and consider the case when first i
characters of all the three strings are equal.
There must be some difference on i-th position – there are three cases:

A[i ] < B[i ] < C [i ],

A[i ] < B[i ] = C [i ],

A[i ] = B[i ] < C [i ].

The number of ways the prefix can be substituted is simply

26<number of positions with three ?> before the first position where
non-? characters are different, and 0 after this position.

The number of ways the suffixes can be substituted can be easily
computed from precomputed values.
The whole solution runs in O(n) time.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 23 / 1



Problem F Vocabulary

Now, iterate over i from 0 to n − 1 and consider the case when first i
characters of all the three strings are equal.
There must be some difference on i-th position – there are three cases:

A[i ] < B[i ] < C [i ],

A[i ] < B[i ] = C [i ],

A[i ] = B[i ] < C [i ].

The number of ways the prefix can be substituted is simply

26<number of positions with three ?> before the first position where
non-? characters are different, and 0 after this position.
The number of ways the suffixes can be substituted can be easily
computed from precomputed values.

The whole solution runs in O(n) time.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 23 / 1



Problem F Vocabulary

Now, iterate over i from 0 to n − 1 and consider the case when first i
characters of all the three strings are equal.
There must be some difference on i-th position – there are three cases:

A[i ] < B[i ] < C [i ],

A[i ] < B[i ] = C [i ],

A[i ] = B[i ] < C [i ].

The number of ways the prefix can be substituted is simply

26<number of positions with three ?> before the first position where
non-? characters are different, and 0 after this position.
The number of ways the suffixes can be substituted can be easily
computed from precomputed values.
The whole solution runs in O(n) time.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 23 / 1



Problem E Can’t stop playing

Problem E
Can’t stop playing

Submits: 98
Accepted: 15

First solved by:
University of Warsaw

(Pawel Kura, Bartosz Tarnawski, Kamil Zyla)
01:32:38

Author: Arkadiusz Pawlik

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 24 / 1



Problem E Can’t stop playing

If we reach a configuration of the form:

..., 16, 8, 32, ...

then we are stuck.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 25 / 1



Problem E Can’t stop playing

The only valid configurations are:

(l1, l2, ..., lq, rs , rs−1, ..., r1)

with

l1 < l2 < ... < lq and rs > rs−1 > ... > r1

li , rj ∈ {1, 2, 4, 8, ...} for all i , j

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 26 / 1



Problem E Can’t stop playing

The algorithm:

Keep the set of reachable configurations after each step,

compute the new set by trying two options for every old reachable
configuration.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 27 / 1



Problem E Can’t stop playing

How many valid configurations are there?

Not many!

For fixed sum = l1 + l2 + ...+ lq + r1 + r2 + ...+ rs ≤ 213

there are at most 213 valid configurations!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 28 / 1



Problem E Can’t stop playing

Example: 4, 2, 1, 2

4

Step 1: 2
4

2
4

Step 2:

1
2

4

1
2

4

1
2

4

1
2

4

1

8

1

8

Step 3:

Step 4:

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 29 / 1



Problem E Can’t stop playing

(l1, l2, ..., lq, rs , rs−1, ..., r1)

How to represent a configuration?

at each step the sum = l1 + l2 + ...+ lq + r1 + r2 + ...+ rs is fixed,

it is enough to store (l1, l2, ..., lq),

or even l = l1 + l2 + ...+ lq,

only one 32-bit variable!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 30 / 1



Problem E Can’t stop playing

Worst case ≈ 213 · 1000 unit operations per test case.

Recovering the answer: reverse the algorithm...

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 31 / 1



Problem K The Imp

Problem K
The Imp

Submits: 54
Accepted: 6

First solved by:
University of Warsaw

(Kamil Debowski, Blazej Magnowski, Marek Sommer)
02:16:23

Author: Lech Duraj

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 32 / 1



Problem K The Imp

There are n items, each item i with value(i) and cost cost(i). We pick
and item, pay the cost, and the adversary (The Imp) choose to either give
us the item or destroy it, forcing us to pay for next item.

If the adversary can destroy at most k items, what is our total gain?

Let us change the game slightly. Instead of one item at a time, we give
The Imp our whole strategy:

A strategy is the sequence (s1, . . . , sk+1) of items. The Imp chooses which
item we can keep, and we pay for this one and all the previous ones.

This does not help us (of course), but also doesn’t help The Imp, who
already knew the strategy.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 33 / 1



Problem K The Imp

There are n items, each item i with value(i) and cost cost(i). We pick
and item, pay the cost, and the adversary (The Imp) choose to either give
us the item or destroy it, forcing us to pay for next item.

If the adversary can destroy at most k items, what is our total gain?

Let us change the game slightly. Instead of one item at a time, we give
The Imp our whole strategy:

A strategy is the sequence (s1, . . . , sk+1) of items. The Imp chooses which
item we can keep, and we pay for this one and all the previous ones.

This does not help us (of course), but also doesn’t help The Imp, who
already knew the strategy.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 33 / 1



Problem K The Imp

There are n items, each item i with value(i) and cost cost(i). We pick
and item, pay the cost, and the adversary (The Imp) choose to either give
us the item or destroy it, forcing us to pay for next item.

If the adversary can destroy at most k items, what is our total gain?

Let us change the game slightly. Instead of one item at a time, we give
The Imp our whole strategy:

A strategy is the sequence (s1, . . . , sk+1) of items. The Imp chooses which
item we can keep, and we pay for this one and all the previous ones.

This does not help us (of course), but also doesn’t help The Imp, who
already knew the strategy.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 33 / 1



Problem K The Imp

There are n items, each item i with value(i) and cost cost(i). We pick
and item, pay the cost, and the adversary (The Imp) choose to either give
us the item or destroy it, forcing us to pay for next item.

If the adversary can destroy at most k items, what is our total gain?

Let us change the game slightly. Instead of one item at a time, we give
The Imp our whole strategy:

A strategy is the sequence (s1, . . . , sk+1) of items. The Imp chooses which
item we can keep, and we pay for this one and all the previous ones.

This does not help us (of course), but also doesn’t help The Imp, who
already knew the strategy.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 33 / 1



Problem K The Imp

Key observation:

We can assume that for the optimal strategy s1, . . . , sn we have
value(s1) ≤ value(s2) ≤ . . . ≤ value(sk+1)!

This can be proven by ”exchange” argument:

If si > si+1 and we swap si with si+1, then every Imp’s possible move will
yield worse result for him (and thus better for us).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 34 / 1



Problem K The Imp

Key observation:

We can assume that for the optimal strategy s1, . . . , sn we have
value(s1) ≤ value(s2) ≤ . . . ≤ value(sk+1)!

This can be proven by ”exchange” argument:

If si > si+1 and we swap si with si+1, then every Imp’s possible move will
yield worse result for him (and thus better for us).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 34 / 1



Problem K The Imp

So, the optimal strategy is a sequence increasing wrt. value.

With that observation, quite a few strategies work. We will show the
arguably easiest to prove – dynamic strategy:

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 35 / 1



Problem K The Imp

So, the optimal strategy is a sequence increasing wrt. value.

With that observation, quite a few strategies work. We will show the
arguably easiest to prove – dynamic strategy:

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 35 / 1



Problem K The Imp

We sort the items so that value(1) ≤ value(2) ≤ . . . value(n).
Let dp[i ][q] be the optimal gain for the set of items {i , i + 1, . . . , n} with
The Imp able to cast his spell q times.

If we want to start the game with picking item i , then either:

Imp lets us have it: value(i)− cost(i).

Imp destroys it: −cost(i) + dp[i + 1][q − 1].

Of course, Imp will choose worse option.

If we ignore the item i , then we should never go back to it, so the solution
is dp[i + 1][q].

Summing that up: dp[i ][q] =
max(dp[i + 1][q],min(value(i)− cost(i),−cost(i) + dp[i + 1][q − 1])).

Complexity: O(nk).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 36 / 1



Problem K The Imp

We sort the items so that value(1) ≤ value(2) ≤ . . . value(n).
Let dp[i ][q] be the optimal gain for the set of items {i , i + 1, . . . , n} with
The Imp able to cast his spell q times.

If we want to start the game with picking item i , then either:

Imp lets us have it: value(i)− cost(i).

Imp destroys it: −cost(i) + dp[i + 1][q − 1].

Of course, Imp will choose worse option.

If we ignore the item i , then we should never go back to it, so the solution
is dp[i + 1][q].

Summing that up: dp[i ][q] =
max(dp[i + 1][q],min(value(i)− cost(i),−cost(i) + dp[i + 1][q − 1])).

Complexity: O(nk).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 36 / 1



Problem K The Imp

We sort the items so that value(1) ≤ value(2) ≤ . . . value(n).
Let dp[i ][q] be the optimal gain for the set of items {i , i + 1, . . . , n} with
The Imp able to cast his spell q times.

If we want to start the game with picking item i , then either:

Imp lets us have it: value(i)− cost(i).

Imp destroys it: −cost(i) + dp[i + 1][q − 1].

Of course, Imp will choose worse option.

If we ignore the item i , then we should never go back to it, so the solution
is dp[i + 1][q].

Summing that up: dp[i ][q] =
max(dp[i + 1][q],min(value(i)− cost(i),−cost(i) + dp[i + 1][q − 1])).

Complexity: O(nk).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 36 / 1



Problem K The Imp

We sort the items so that value(1) ≤ value(2) ≤ . . . value(n).
Let dp[i ][q] be the optimal gain for the set of items {i , i + 1, . . . , n} with
The Imp able to cast his spell q times.

If we want to start the game with picking item i , then either:

Imp lets us have it: value(i)− cost(i).

Imp destroys it: −cost(i) + dp[i + 1][q − 1].

Of course, Imp will choose worse option.

If we ignore the item i , then we should never go back to it, so the solution
is dp[i + 1][q].

Summing that up: dp[i ][q] =
max(dp[i + 1][q],min(value(i)− cost(i),−cost(i) + dp[i + 1][q − 1])).

Complexity: O(nk).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 36 / 1



Problem K The Imp

Why k ≤ 9?

There is also an improved backtrack that works in O(k! log n + n log n). It
would get an OK as well.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 37 / 1



Problem A Parades

Problem A
Parades

Submits: 26
Accepted: 5

First solved by:
University of Wroc law

(Bartlomiej Dudek, Maciej Duleba, Mateusz Golebiewski)
02:56:01

Author: Pawe l Komosa

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 38 / 1



Problem A Parades

Problem:
You are given a tree on n ≤ 1000 nodes with maximum degree d ≤ 10,
and m ≤

(n
2

)
paths (given as their endpoints). You need to find the

maximum size edge-disjoint subset of these paths.

Solution:
O(n2 + nd2d + m) bottom-up dynamic programming with maximum
matching computation in each node.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 39 / 1



Problem A Parades

Problem:
You are given a tree on n ≤ 1000 nodes with maximum degree d ≤ 10,
and m ≤

(n
2

)
paths (given as their endpoints). You need to find the

maximum size edge-disjoint subset of these paths.

Solution:
O(n2 + nd2d + m) bottom-up dynamic programming with maximum
matching computation in each node.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 39 / 1



Problem A Parades

Solution:

Root the tree in any node.

For each subtree compute (in bottom-up order):

the maximum number of disjoint paths within this subtree;
which nodes in this subtree are still accessible from its root without
using any edge from the above paths.

Key observation:
It is never beneficial to leave two nodes accessible instead of connecting
them with a path.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 40 / 1



Problem A Parades

Solution:

Root the tree in any node.

For each subtree compute (in bottom-up order):

the maximum number of disjoint paths within this subtree;
which nodes in this subtree are still accessible from its root without
using any edge from the above paths.

Key observation:
It is never beneficial to leave two nodes accessible instead of connecting
them with a path.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 40 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem A Parades

How to compute DP values for a node u knowing values for its children:

For every child v : if any of the accessible nodes from v ’s subtree can
be connected by a path with u, connect it (at most once per child).

Build an auxiliary graph with children as nodes. Two children are
connected with an edge if there is a path on the input that connects
two accessible nodes from subtrees of these children.

Calculate the maximum matching on the auxiliary graph. There are
at most 10 nodes, so a simple exponential time algorithm
(backtracking or DP on all subsets) is sufficient.

If two children get matched in the auxiliary graph, select a path that
connects two accessible nodes from subtrees of these children.

If a children remains unmatched, make all its accessible nodes also
accessible from u. Also u itself remains accessible from u.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 41 / 1



Problem L Outer space invaders

Problem L
Outer space invaders

Submits: 8
Accepted: 3

First solved by:
Charles University in Prague

(Pavol Rohar, Jakub Safin, Tomas Svab)
02:38:09

Author: Bartosz Walczak

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 42 / 1



Problem L Outer space invaders

Problem (slightly rephrased):
You are given n ≤ 300 horizontal segments (ai , di )− (bi , di ). You have to
draw some vertical segments, starting at the OX axis, in such a way that
they touch (or intersect) all horizontal segments and have the minimal
total length.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 43 / 1



Problem L Outer space invaders

Observation: it is always OK to draw horizontal segments only at some ai .

Solution: dynamic programming with O(n2) states and O(n) time per
state.

DP[i ][j ] = minimal length of vertical segments intersecting horizontal
segments fully contained in (ai , aj) interval.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 44 / 1



Problem L Outer space invaders

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 45 / 1



Problem L Outer space invaders

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 45 / 1



Problem L Outer space invaders

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 45 / 1



Problem J Pork barrel

Problem J
Pork barrel

Submits: 2
Accepted: 1

First solved by:
University of Zagreb

(Stjepan Glavina, Ivan Katanic, Gustav Matula)
02:46:03

Author: Micha l Sapalski, Grzegorz Herman

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 46 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 47 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

[1, 5]→ 10

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 47 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

[1, 5]→ 10

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 47 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

8

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

7

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

6

5

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

6

4

32

1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 48 / 1



Problem J Pork barrel

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

6 4 3 2 1

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

6 4 3 2 1

[5, 7]→ 18

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

6 4 3 2 1

[4, 8]→ 30

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

8

8 7

8 7 6

8 7 6 5

8 7 6 5 4

7 6 5 4 3

6 5 4 3 2

6 4 3 2 1 [1, 5]→ 10

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 49 / 1



Problem J Pork barrel

-:0 -:0 -:0 -:0 -:0 -:0 -:0 -:0

-:0
-:0 -:0 -:0

-:0 -:0

-:0

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8

-:0 -:0 -:0 -:0 -:0 -:0 -:0

-:0
8:8

-:0 -:0 -:0

-:0
8:8

-:0

-:0
8:8

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8

-:0
7:7

-:0 -:0 -:0 -:0 -:0 -:0

-:0
8:8
7:15

-:0
6:6

-:0 -:0

-:0
8:8
7:15

-:0

-:0
8:8
7:15

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8

-:0
7:7

-:0
6:6

-:0 -:0 -:0 -:0 -:0

-:0
8:8
7:15

-:0
6:6

-:0 -:0

-:0
8:8
7:15
6:21

-:0

-:0
8:8
7:15
6:21

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8

-:0
7:7

-:0
6:6

-:0
5:5

-:0 -:0 -:0 -:0

-:0
8:8
7:15

-:0
6:6
5:11

-:0 -:0

-:0
8:8
7:15
6:21
5:26

-:0

-:0
8:8
7:15
6:21
5:26

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8

-:0
7:7

-:0
6:6

-:0
5:5

-:0
4:4

-:0 -:0 -:0

-:0
8:8
7:15

-:0
6:6
5:11

-:0
4:4

-:0

-:0
8:8
7:15
6:21
5:26

-:0
4:4

-:0
8:8
7:15
6:21
5:26
4:30

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8
3:0

-:0
7:7

-:0
6:6

-:0
5:5

-:0
4:4

-:0
3:3

-:0 -:0

-:0
8:8
7:15
3:7

-:0
6:6
5:11

-:0
4:4
3:7

-:0

-:0
8:8
7:15
6:21
5:26
3:18

-:0
4:4
3:7

-:0
8:8
7:15
6:21
5:26
4:30
3:25

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8
3:0

-:0
7:7
2:0

-:0
6:6

-:0
5:5

-:0
4:4

-:0
3:3

-:0
2:2

-:0

-:0
8:8
7:15
3:7
2:0

-:0
6:6
5:11

-:0
4:4
3:7

-:0
2:2

-:0
8:8
7:15
6:21
5:26
3:18
2:11

-:0
4:4
3:7
2:9

-:0
8:8
7:15
6:21
5:26
4:30
3:25
2:20

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8
3:0

-:0
7:7
2:0

-:0
6:6

-:0
5:5
1:0

-:0
4:4

-:0
3:3

-:0
2:2

-:0
1:1

-:0
8:8
7:15
3:7
2:0

-:0
6:6
5:11
1:6

-:0
4:4
3:7

-:0
2:2
1:3

-:0
8:8
7:15
6:21
5:26
3:18
2:11
1:6

-:0
4:4
3:7
2:9
1:10

-:0
8:8
7:15
6:21
5:26
4:30
3:25
2:20
1:16

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem J Pork barrel

-:0
8:8
3:0

-:0
7:7
2:0

-:0
6:6

-:0
5:5
1:0

-:0
4:4

-:0
3:3

-:0
2:2

-:0
1:1

-:0
8:8
7:15
3:7
2:0

-:0
6:6
5:11
1:6

-:0
4:4
3:7

-:0
2:2
1:3

-:0
8:8
7:15
6:21
5:26
3:18
2:11
1:6

-:0
4:4
3:7
2:9
1:10

-:0
8:8
7:15
6:21
5:26
4:30
3:25
2:20
1:16

[5, 7]→ 18

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 50 / 1



Problem B Mountainous landscape

Problem B
Mountainous landscape

Submits: 11
Accepted: 1

First solved by:
AGH University of Science and Technology

(Milosz Lakomy, Adam Obuchowicz, Martyna Walaszewska)
03:50:05

Author: Grzegorz Herman

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 51 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 52 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 52 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 53 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 53 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Y

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Y

?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Y

N ?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Y

N Y

?

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

N

Y

N Y

Y

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 54 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

2

1

3

4

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

2

1

3

4

1

2

3

4

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem B Mountainous landscape

2

1

3

4

1
2

3

4

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 55 / 1



Problem G Virus synthesis

Problem G
Virus synthesis

Submits: 8
Accepted: 0

First solved by:
—
—

Author: Arkadiusz Pawlik

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 56 / 1



Problem G Virus synthesis

There is an algorithm for finding maximal palindromes in a given word,
called Manacher’s algorithm. During the execution, it enumerates all the
palindromes.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 57 / 1



Problem G Virus synthesis

There is an algorithm for finding maximal palindromes in a given word,
called Manacher’s algorithm. During the execution, it enumerates all the
palindromes.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 57 / 1



Problem G Virus synthesis

Suppose that we have all the palindromes enumerated: p1, p2, . . . , ps . For
every pi we memorize trim(pi ) – the palindrome pi without first and last
letter.

Now, let us compute the minimal cost of synthesizing the words p1, p2,
. . . , ps , in order of increasing lengths.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 58 / 1



Problem G Virus synthesis

Suppose that we have all the palindromes enumerated: p1, p2, . . . , ps . For
every pi we memorize trim(pi ) – the palindrome pi without first and last
letter.

Now, let us compute the minimal cost of synthesizing the words p1, p2,
. . . , ps , in order of increasing lengths.

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 58 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain pi?

by replicating half [i ]: full [i ] = half [i ] + 1,

by synthesizing trim[i ] and adding first and last letter:
full [i ] = full [trim(i)] + 2,

by synthesizing palindrome pk that is a preffix of pi and adding some
letters at the end: full [i ] = full [k] + length(i)− length(k).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain pi?

by replicating half [i ]: full [i ] = half [i ] + 1,

by synthesizing trim[i ] and adding first and last letter:
full [i ] = full [trim(i)] + 2,

by synthesizing palindrome pk that is a preffix of pi and adding some
letters at the end: full [i ] = full [k] + length(i)− length(k).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain pi?

by replicating half [i ]: full [i ] = half [i ] + 1,

by synthesizing trim[i ] and adding first and last letter:
full [i ] = full [trim(i)] + 2,

by synthesizing palindrome pk that is a preffix of pi and adding some
letters at the end: full [i ] = full [k] + length(i)− length(k).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain pi?

by replicating half [i ]: full [i ] = half [i ] + 1,

by synthesizing trim[i ] and adding first and last letter:
full [i ] = full [trim(i)] + 2,

by synthesizing palindrome pk that is a preffix of pi and adding some
letters at the end: full [i ] = full [k] + length(i)− length(k).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain first half of pi?

by adding the first letter to half of trim(i): half [i ] = half [trim(i)] + 1,

by synthesizing palindrome pl that is a prefix of half (pi ) and adding
some letters at the end: half [i ] = full [l ] + length(i)/2− length(l).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain first half of pi?

by adding the first letter to half of trim(i): half [i ] = half [trim(i)] + 1,

by synthesizing palindrome pl that is a prefix of half (pi ) and adding
some letters at the end: half [i ] = full [l ] + length(i)/2− length(l).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

For every palindrome pi we compute:

full [i ] – cost of creating pi .

half [i ] – cost of creating half of pi .

How can we obtain first half of pi?

by adding the first letter to half of trim(i): half [i ] = half [trim(i)] + 1,

by synthesizing palindrome pl that is a prefix of half (pi ) and adding
some letters at the end: half [i ] = full [l ] + length(i)/2− length(l).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 59 / 1



Problem G Virus synthesis

If we know the cost of synthesizing all palindromes in the word, it is easy
to compute the cost of the whole word.

We can only obtain the word from its palindrome subword – we simply
check all of them.

This solution has complexity O(n log n). The log n factor comes from
searching for prefix palindromes (not trivial, but quite easy).

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 60 / 1



Credits

Credits

Thanks to our betareaders and betatesters:

Szymon Gut
Grzegorz Gutowski

Witold Jarnicki
Robert Obryk

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 61 / 1



Credits

Credits

. . . and to all of you for solving the problems.
Thank you!

Jagiellonian University CERC 2014: Presentation of solutions November 20, 2014 62 / 1


	Problem H
	Good morning!

	Problem C
	Sums

	Problem D
	Wheels


