
Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

ABB

abb.c, abb.cpp, Abb.java, abb.py

Fernando was hired by the University of Waterloo to finish a development project the university
started some time ago. Outside the campus, the university wanted to build its representative
bungalow street for important foreign visitors and collaborators.

Currently, the street is built only partially, it begins at the lake shore and continues into the
forests, where it currently ends. Fernando’s task is to complete the street at its forest end by
building more bungalows there. All existing bungalows stand on one side of the street and the
new ones should be built on the same side. The bungalows are of various types and painted in
various colors.

The whole disposition of the street looks a bit chaotic to Fernando. He is afraid that it will look
even more chaotic when he adds new bungalows of his own design. To counterbalance the chaos
of all bungalow shapes, he wants to add some order to the arrangement by choosing suitable
colors for the new bungalows. When the project is finished, the whole sequence of bungalow
colors will be symmetric, that is, the sequence of colors is the same when observed from either
end of the street.

Among other questions, Fernando wonders what is the minimum number of new bungalows he
needs to build and paint appropriately to complete the project while respecting his self-imposed
bungalow color constraint.

Input Specification

The first line contains one integer N (1 ≤ N ≤ 4 · 105), the number of existing bungalows in
the street. The next line describes the sequence of colors of the existing bungalows, from the
beginning of the street at the lake. The line contains one string composed of N lowercase letters
(“a” through “z”), where different letters represent different colors.

Output Specification

Output the minimum number of bungalows which must be added to the forest end of the street
and painted appropriately to satisfy Fernando’s color symmetry demand.

Sample Input 1

3

abb

Output for Sample Input 1

1

Sample Input 2

12

recakjenecep

Output for Sample Input 2

11



Sample Input 3

15

murderforajarof

Output for Sample Input 3

6



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Be Geeks!

begeeks.c, begeeks.cpp, Begeeks.java, begeeks.py

The musical band Be Geeks! got its name by no accident, as all the members are genuine math
geeks. Among others, they love examining various properties of number sequences. Let’s see an
example of their subject of interest.

Let A be a nonempty sequence of positive integers, A = (a1, a2, ..., aN ).
Let G(i, j) = gcd(ai, ai+1, . . . , aj), where 1 ≤ i ≤ j ≤ N .
Let M(i, j) = max(ai, ai+1, . . . , aj), where 1 ≤ i ≤ j ≤ N .
Let P (i, j) = G(i, j) ·M(i, j), where 1 ≤ i ≤ j ≤ N .
Let F (A) =

∑
P (i, j) over all pairs of integers 1 ≤ i ≤ j ≤ N .

The function gcd stands for the greatest common divisor of the given values. The greatest
common divisor of a nonempty sequence of integers is the biggest integer which divides each
integer in the sequence evenly.

Input Specification

The first line contains one integer N (1 ≤ N ≤ 2 · 105). The next line contains N integers
a1, a2, . . . , aN (1 ≤ ai ≤ 109).

Output Specification

Print the value of F (A) modulo 1 000 000 007.

Sample Input 1

4

1 2 3 4

Output for Sample Input 1

50

Sample Input 2

5

2 4 6 12 3

Output for Sample Input 2

457





Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Bob in Wonderland

bob.c, bob.cpp, Bob.java, bob.py

A chain, as everybody knows, is made of connected links. Typically, all links are of the same
shape and size. Bob is a blacksmith apprentice, and he is making his own first iridium chain.
He follows the traditional formula of chain-making. It says:

• If there is no chain yet, make a link and it will be a piece of your chain.

• If there is a piece of chain, make another link and connect it to one other link in the piece
of chain you already have.

Bob made the first link. Then, each time he made another link, he connected it to some other
link in his piece of chain, exactly as the formula told him to do.

When he finished, he realized that the object he created did not resemble a usual chain at all.
In an effort to straighten the chain, he repeatedly took two links which seemed to be at the ends
of the chain and tried to pull them apart as far as he could. But there were some more pieces
of the “chain” dangling down from the straightened piece at various places.

It was obvious to Bob that his work is not finished yet and he decided to call the object he
produced the unfinished chain. After some more pondering, Bob came to a conclusion that he
has to break some links and reconnect them to the rest of the unfinished chain more cautiously
to obtain a straight chain he aims to produce. In a straight chain, each link is connected to at
most two other links and a straight chain cannot be separated into more pieces without breaking
a link.

Being now more careful, Bob is going to progress in simple steps. In one step he will choose a
link, say A, connected to another link, say B, in the unfinished chain. He will then break A,
disconnect it from B and reconnect A to some other link, say C, in the unfinished chain. If
there are more links other than B originally connected to A, Bob will keep them connected to
A during the whole step.

What is the minimum number of steps Bob has to perform to get a straight chain?

Input Specification

The first line contains one integer N (1 ≤ N ≤ 3 · 105), the number of links in the unfinished
chain. The links are labeled 1, 2, . . . , N . Each of the next N − 1 lines has two integers denoting
the labels of two connected links in the unfinished chain. The connections are listed in arbitrary
order. The unfinished chain is guaranteed to form only one piece.

Output Specification

Output the minimum number of steps which will turn Bob’s unfinished chain into a straight
chain.



Sample Input 1

5

4 3

1 2

4 5

3 2

Output for Sample Input 1

0

Sample Input 2

6

1 3

3 2

3 4

4 5

4 6

Output for Sample Input 2

2

Sample Input 3

7

1 2

2 3

3 4

4 5

3 6

6 7

Output for Sample Input 3

1

Figure 1: Illustration of Sample Input 1, Sample Input 2 and Sample Input 3



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Crimson Sexy Jalapeños

crimson.c, crimson.cpp, Crimson.java, crimson.py

The central piece of the Tainted chocolate game is a classic chocolate bar divided into square
pieces by a rectangular grid of grooves parallel to the sides of the bar. Some squares have been
tainted with extremely bitter substance that makes the tainted square (nearly) indigestible.

The game is played by two players who alternate in their moves. In a valid move, one player is
obliged to consume some part of the chocolate bar. It is allowed to divide the current chocolate
bar along one of the grooves into two smaller bars and then eat just one of them. The player
who consumes a bar containing at least one tainted square loses the game.

The positions of all tainted squares are known at the beginning of the game. All other squares
are safe to eat. Each player tries to avoid eating a bar of chocolate containing one or more
tainted squares, because when this happens, the player involuntarily makes their personal most
disgusted grimace becoming a source of great amusement not only to the other player but also
to other people watching the game.

In this problem, you are to write a program to play the Tainted chocolate game. We neglect
the part of the code which simulates players grimaces and chocolate consumption, and instead
focus only on the winning moves.

A valid move is described by a directional string and a positive integer X. The directional string
is one of the four strings “top”, “bottom”, “left”, or “right”. The description means that the
bar is divided by the X-th groove, counted from that side of the currently remaining bar which
is specified by the given directional string. The player then consumes the part on that side.

Input Specification

The first line of input contains integers R, C, K (1 ≤ R,C ≤ 104; 1 ≤ K ≤ 100). R is the number
of rows, C is the number of columns, and K is the number of tainted squares in the chocolate
bar. Each of the next K lines contains two integer values A and B (1 ≤ A ≤ R, 1 ≤ B ≤ C),
the coordinates of one tainted square. The coordinates of the top-left corner square are (1, 1).

The rest of the input depends on your output. For each of your valid moves, there will appear
one input line containing either an opponent’s valid move description or the string “yuck!”
which indicates the opponent lost the game. In the latter case your program should terminate.

Output Specification

After reading the chocolate bar description, you may decide whether you want to start the game.
If you want to play second, print one line containing the string “pass”. This special string may
only appear on the very first line of your output.

Then, for each of your moves, print one line containing a description of a valid move. Your
program will be given a Wrong Answer if it produces anything else than a sequence of valid
moves leading to the victory.



After printing each move description, flush the output buffer. For example, you may use
fflush(stdout) or cout.flush() in C++, System.out.flush() in Java, or stdout.flush()
in Python.

Sample Input 1

4 6 2

2 3

4 4

right 2

yuck!

Output for Sample Input 1

top 1

left 2

For the purpose of clarity, the above data are interleaved to illustrate the order of interaction

between your program and the system. Note that there will be no empty lines in real data and

there must not be any empty lines in your output.

Sample Input 2

3 5 1

2 3

left 1

left 1

right 1

yuck!

Output for Sample Input 2

pass

right 1

top 1

bottom 1

Figure 1: Illustration of the game from Sample Input 1



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Deep800080

deep.c, deep.cpp, Deep.java, deep.py

Ian, the owner of the boat called Deep800080 is going to make a barbecue on the lake this
evening. There is a narrow straight pier running from the shore into the lake. Ian thinks it will
be a good idea to make the barbecue somewhere on the pier.

He wants to test his new special barbecue charcoal. When it burns it produces a distinctive
thick purple smoke which spreads over the water. The cloud of smoke is guaranteed to spread
in a perfect circle around the barbecue site. Eventually, the cloud will reach some maximum
radius and will stay unchanged for the rest of the evening until it dissipates later in the night.

There are multiple boats anchored in the lake in various distances from the pier. Ian wants to
inform their crews about the barbecue. Being a little lazy, he hopes that the barbecue smoke
will do this job for him. Ian hopes that when the cloud reaches a boat, the crew can smell the
smoke, and so they immediately know there is a barbecue nearby.

Ian wants to maximize the number of alerted crews and thus he wants to choose a place of the
barbecue grill on the pier which would maximize the number of the boats reached by the purple
cloud.

You may assume that the boats on the lake are firmly anchored and that they do not move
while the cloud is on the lake. Also, once the barbecue site is chosen, its position remains fixed
for the whole event.

Input Specification

The first line contains four integers N,R,A,B (0 ≤ N ≤ 3 · 105; 1 ≤ R ≤ 106). N is the number
of boats on the lake, R is the maximal radius of the purple barbecue cloud. You may assume
that the pier is so narrow and so long that it may be perceived as a straight line passing through
two distinct points with coordinates (0, 0) and (A,B).

Each of the next N lines contains two integers X and Y describing the coordinates of one boat
on the lake. No two boats share the same coordinates.

All coordinates are common Cartesian coordinates in the plane, their absolute value will be at
most 106.

Output Specification

Output the maximum possible number of boats that can be reached by the purple barbecue
cloud.

A boat is considered reached if its position is in the circle formed by the cloud, including its
boundary. You may assume that increasing the maximal radius of the smoke cloud by 10−3

would not change the solution.



Sample Input 1

7 5 0 1

-1 -1

1 -1

0 0

2 3

3 4

10 10

2 12

Output for Sample Input 1

5

Sample Input 2

3 1 1 0

0 0

2 0

4 0

Output for Sample Input 2

2

Sample Input 3

4 1 1 0

0 0

1 1

1 -1

2 0

Output for Sample Input 3

4

−4 −2 2 4 6 8 10 12

−4

−2

2

4

6

8

10

12

−1 1 2 3 4

−1

1

−1 1 2 3

−1

1

Figure 1: Possible solution of Sample Input 1 (left), Sample Input 2 (top right) and Sample
Input 3 (bottom right)



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Zeldain Garden

garden.c, garden.cpp, Garden.java, garden.py

Boris is the chief executive officer of Rock Anywhere Transport (RAT) company which spe-
cializes in supporting music industry. In particular, they provide discount transport for many
popular rock bands. This time Boris has to move a large collection of quality Mexican concert
loudspeakers from the port on the North Sea to the far inland capital. As the collection is
expected to be big, Boris has to organize a number of lorries to assure smooth transport. The
multitude of lorries carrying the cargo through the country is called a convoy.

Boris wants to transport the whole collection in one go by a single convoy and without leaving
even a single loudspeaker behind. Strict E.U. regulations demand that in the case of large
transport of audio technology, all lorries in the convoy must carry exactly the same number of
pieces of the equipment.

To meet all the regulations, Boris would like to do some planning in advance, despite the fact that
he does not yet know the exact number of loudspeakers, which has a very significant influence
on the choices of the number and the size of the lorries in the convoy. To examine various
scenarios, for each possible collection size, Boris calculates the so-called “variability”, which is
the number of different convoys that may be created for that collection size without violating
the regulations. Two convoys are different if they consist of a different number of lorries.

For instance, the variability of the collection of 6 loudspeakers is 4, because they may be evenly
divided into 1, 2, 3, or 6 lorries.

Input Specification

The input contains one text line with two integers N , M (1 ≤ N ≤ M ≤ 1012), the minimum
and the maximum number of loudspeakers in the collection.

Output Specification

Print a single integer, the sum of variabilities of all possible collection sizes between N and M ,
inclusive.

Sample Input 1

2 5

Output for Sample Input 1

9

Sample Input 2

12 12

Output for Sample Input 2

6



Sample Input 3

555 666

Output for Sample Input 3

852



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Light Emitting Hindenburg

hindenburg.c, hindenburg.cpp, Hindenburg.java, hindenburg.py

Lothar is organizing a concert tour of his friends’ rock band. The tour will take place in
November and each day there will be at most one concert. The tour will be very representative
and many musicians are willing to take part in it. The number of musicians in the tour is
strictly prescribed and cannot be changed. Each concert on the tour must be attended by all
the musicians taking part in the tour.

The good news for Lothar is that the number of candidate musicians is at least as big as the
prescribed number of musicians in the tour. The bad news is that a typical musician is not
available during the whole month and that various musicians’ schedules differ a lot from each
other.

Long ago, Lothar wrote a core of a computer scheduling system, and he is exploiting it now
to organize the tour. He repeatedly and somewhat randomly chooses a group of musicians of
prescribed size, and lets the system calculate an acceptable tour schedule. The system depends
on a very specific data format. The schedules of musicians and the tour schedules are repre-
sented as numerical codes. The days in November are labeled by their numbers in the month:
1, 2, . . . , 30.

For a given musician, each November day is assigned a particular numerical code. A day with
label L is coded by integer 230−L if the musician is available on that day. Otherwise, the day is
coded by 0. The musician schedule code is the sum of all his or her day codes.

For a given group of musicians, each November day is assigned a particular numerical code. A
day with label L is coded by integer 230−L if all musicians in the group are available on that
day. Otherwise, the day is coded by 0. The group availability code is the sum of all day codes
of the group.

For many additional subtle reasons, Lothar thinks that the best tour would be the one with the
highest possible value of the availability code of the group of musicians taking part in it.

Input Specification

The first line contains two integers N , K (1 ≤ K ≤ N ≤ 2 · 105). N is the number of available
musicians, K is the prescribed number of musicians taking part in the tour. The next line
contains a sequence of N positive integers. Each integer in the sequence represents a code of a
schedule of one musician. The codes are listed in arbitrary order.

Output Specification

Print the best possible availability code of any group of K musicians.



Sample Input 1

5 2

6 15 9 666 1

Output for Sample Input 1

10

Sample Input 2

8 4

13 30 27 20 11 30 19 10

Output for Sample Input 2

18



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

K==S

kequalss.c, kequalss.cpp, Kequalss.java, kequalss.py

Progressive hard octave rock tunes (so-called “phorts”) are written using a specific music nota-
tion. This flavor of rock is built on just 13 different note pitches, other pitches (in other octaves)
are considered to be an outdated musical ballast. Each note can be either a long one or a short
one. Consequently, there are exactly 26 different notes in the rock.

You are going to compose a phort tune on the occasion of your friend’s birthday and perform it
with your band on the main town square. While composing the phort, you need to avoid certain
musical phrases, which are heavily copyrighted as a result of long research sponsored by big
record companies. It has been established that these phrases are very catchy, easy to remember,
and could be exploited to bind the listeners subconsciously to a particular music company which
would utilize these phrases in their production.

The tune is a sequence of notes. A musical phrase is also a sequence of notes and it is considered
to be contained in a tune if its notes form a contiguous subsequence of the tune, which means
the same notes appear in the tune right after each other in the same order.

Fortunately, only a few forbidden phrases have been patented so far. Thus, you have a relative
freedom in composing your own tunes. In particular, you are interested in the number of
acceptable tunes of some length. An acceptable tune is any tune which does not contain a
forbidden phrase. The length of the tune is equal to the number of notes it contains.

Input Specification

The first line contains two integers N , Q (1 ≤ N ≤ 109, 1 ≤ Q ≤ 100). N is the length of the
tune, Q is the number of forbidden musical phrases. Each of the Q following lines describes one
forbidden phrase. A description of a forbidden phrase starts with a positive integer L, indicating
its length, followed by a string of L lowercase English letters. Each letter represents one rock
note, different letters represent different notes.

The sum of lengths of all forbidden phrases does not exceed 100.

Output Specification

Output the number of different acceptable tunes of lengthN . Print the result modulo 1 000 000 007.



Sample Input 1

2 3

1 a

1 b

1 c

Output for Sample Input 1

529

Sample Input 2

3 3

2 aa

1 a

1 a

Output for Sample Input 2

15625

Sample Input 3

3 1

2 ab

Output for Sample Input 3

17524



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Ponk Warshall

ponk.c, ponk.cpp, Ponk.java, ponk.py

Listening to the rock music permutes your nuclear DNA. This astonishing and unbelievable
fact was recently published in the Rock Nature Weekly, one of the top scientific journals on
the planet. Part of the research was to take DNA samples from volunteers, both before and
after the rock concerts season. The samples were processed and various genes isolated from the
samples. For each person, each gene was isolated twice: The variant before the rock season and
the variant after the season. These two variants were paired and in many cases one variant was
found to be some permutation of the other variant in the pair.

The next step in the research is to determine how the permutations happen. The prevalent
hypothesis suggests that a permutation is composed of a sequence of transpositions, so-called
swaps. A swap is an event (its chemistry is not fully understood yet) in which exactly two
nucleobases in the gene exchange their places in the gene. No other nucleobases in the gene
are affected by the swap. The positions of the two swapped nucleobases might be completely
arbitrary.

To predict and observe the movement of the molecules in the permutation process, the re-
searchers need to know the theoretical minimum number of swaps which can produce a par-
ticular permutation of nucleobases in a gene. We remind you that the nuclear DNA gene is a
sequence of nucleobases cytosine, guanine, adenine, and thymine, which are coded as C, G, A,
and T, respectively.

Input Specification

The input contains two text lines. Each line contains a string of N capital letters “A”, “C”, “G”,
or “T”, (1 ≤ N ≤ 106). The two strings represent one pair of a particular gene versions. The
first line represents the gene before the rock season, the second line represents the same gene
from the same person after the rock season. The number of occurrences of each nucleobase is
the same in both strings.

Output Specification

Output the minimum number of swaps that transform the first gene version into the second one.

Sample Input 1

CGATA

ATAGC

Output for Sample Input 1

2



Sample Input 2

CTAGAGTCTA

TACCGTATAG

Output for Sample Input 2

7



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Saba1000kg

saba.c, saba.cpp, Saba.java, saba.py

There are many different streams in Viking rock movement. Old Icelandic granite rock, Mid-
dle Danish dusty Viking rock, Late Finngail dark green rock, Fjord boulder avalanche rock,
and many others, a complete list of all popular streams would overflow this page many times.
The Scandinavian Ministry of Higher Education studies various ways the streams influence each
other. They are currently planning a huge experiment, when a number of suitably chosen vol-
unteers will be distributed over an archipelago of uninhabited small islands, and the researchers
want to observe the mutual influence of their rock styles and preferences over a relatively long
period of time.

The inhabitants on one island will always influence each other. Some pairs of the islands are
situated close enough for their inhabitants to influence each other, while the distances between
other pairs prevent any direct influence. In the latter case, the inhabitants of such islands may
still influence each other, but only indirectly, if there are one or more other islands that are
inhabited and relay the influence.

There are several proposals on the distribution of the volunteers among the islands. For each of
these distributions, the Ministry would like to know the number of independent groups of inhab-
itants that will form in the archipelago. Two groups of island inhabitants, each occupying one
or more islands, are considered independent, if there is no possibility of their mutual influence,
not even in the indirect way.

Help the Ministry to evaluate their proposals.

Input Specification

The first input line contains three integers, N , E, P (1 ≤ N ≤ 105, 0 ≤ E ≤ 105, 1 ≤ P ≤ 105).
N is the number of islands in the archipelago, E is the number of pairs of islands that allow
direct influence, and P is the number of proposals to be evaluated. The islands are labeled from
1 to N .

The next E lines specify the pairs of islands that allow direct mutual influence. Each of these
lines contains two integers A and B denoting the labels of two different islands. No pair of
islands occurs more than once.

Each of the next P lines describes one proposal. Each line starts with a number of islands
inhabited under that proposal M (1 ≤ M ≤ N) and then contains pairwise distinct labels of M
inhabited islands. No other island will be inhabited under the respective proposal.

The sum of the sizes of all proposals (all numbers M) does not exceed 105.

Output Specification

For each proposal, print a line with the number of independent groups that will form in the
archipelago.



Sample Input 1

4 4 3

1 2

3 1

1 4

3 4

3 2 3 4

1 1

4 1 2 3 4

Output for Sample Input 1

2

1

1

Sample Input 2

5 1 1

1 2

5 5 4 3 2 1

Output for Sample Input 2

4



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

Screamers in the Storm

screamers.c, screamers.cpp, Screamers.java, screamers.py

You may not know that the official name of the “common” urban pigeon you see every day in a
city is in fact “rock pigeon” or “rock dove”. Rock pigeon Rocky Dave is in love with Columba
Livia, a young female rock pigeon who has keen interest in rock, pigeons, and all that relates
to this kind of things. By sheer coincidence, one sunny autumn afternoon, we find them in the
city suburbs sitting on the roof of the same building.

To show off his self-confident athletic gait, Rocky Dave decided not to fly over the roof to his
object of affection, but to walk towards her instead. The roof is not a modern flat roof, it is a
classical roof made of slopes. As the building consists of more smaller buildings joined together,
its floor plan is a bit complex. Thus, the “straight line” in which Dave intends to move towards
Columba Livia, appears straight only when observed from above. Rocky Dave might have to
climb up, over the ridge, down on the other side into a roof valley and then up again, and so on.

We know the exact floor plan of the building, the angle of the slopes on the roof (all angles are
the same), and also the original positions of both our hero and heroine on the roof. Given these
data, compute the exact length of Rocky Dave’s journey, provided that Columba Livia does not
leave her position before Rocky Dave reaches her.

If the path leaves the building boundary, it is Dave’s plan that whenever he meets a rain gutter
on the roof edge, he would fly straight and in the same height in the direction towards Columba
Livia, until he reaches the rain gutter on some other side of the building, where he would further
continue his journey on foot.

To make the situation unambiguous, we present you with the geometric model of a roof. Let Z
be a simple polygon in the x-y plane. A simple polygon is a polygon, whose boundary is a closed
curve which does not touch or intersect itself. An acceptable pyramid is a pyramid whose base
is an axis-parallel square in the x-y plane and its apex (top vertex) is located directly above the
base center. The pyramid height is exactly one half of the length of its base side. Moreover, no
part of the base of an acceptable pyramid lies outside Z. Note that an acceptable pyramid may
formally have zero base side length and zero height, it then consists of a single node, which is
also its apex.

A point X in or above the x-y plane is a point of the roof of Z if and only if it is an apex of an
acceptable pyramid and no point directly above X is an apex of an acceptable pyramid.

Input Specification

The first line contains five integers. The first of them, N (4 ≤ N ≤ 400), is the number of corner
points of the polygon formed in the x-y plane by the edges of the floor plan of the building. The
next two are the x and y coordinates of Rocky Dave and the last two are the x and y coordinates
of Columba Livia.

Each of the next N lines contains the x and y coordinates of one corner point of the polygon.
The points are listed in the counter-clockwise order. Every side of the building is parallel with



one of the axes.

Neither of the two pigeons is located outside of the given polygon. All input coordinates are
integers with the absolute value of at most 105.

Output Specification

Output the length of Rocky Dave’s journey. The answer must have an absolute or relative error
less than 10−7.

Sample Input 1

4 3 0 3 4

0 0

4 0

4 4

0 4

Output for Sample Input 1

4.828427124746

Sample Input 2

6 1 1 5 5

0 0

2 0

2 4

6 4

6 6

0 6

Output for Sample Input 2

6.292528739884

e

s

s

e

Figure 1: Illustration of Sample Input 1 and Sample Input 2



Czech Technical University in Prague

ICPC Foundation
Czech ACM Chapter

Central Europe Regional Contest 2019

The Bugs

thebugs.c, thebugs.cpp, Thebugs.java, thebugs.py

A submarine painted in bright plastic lemon color is investigating ocean depths and measuring
the concentration of plastic yoctoparticles in the water. Each measurement (due to ingenious
choice of the units) is a positive integer.

The measurement system is very recent, poorly tested and prone to errors. The project man-
agement suspects it is full of bugs. They find themselves in a time of trouble. Mother Mary also
suspects it is full of bugs. Everybody cries: Help!

To identify and correct the bugs, they came together and decided to take the sequence of
measured concentrations and analyze all triplets that occur in the sequence of measurements.

• A triplet is a sequence of three integers.

• Each triplet is associated with its characteristic.

• The characteristic of a triplet (x, y, z) is a triplet (sgn(y − x), sgn(z − y), sgn(z − x)).
The value of the sgn(x) function is −1, 0 or 1 for negative, zero or positive value of x,
respectively.

• A triplet (x1, y1, z1) is smaller than triplet (x2, y2, z2) if and only if the first nonzero value
in the triplet (x1 − x2, y1 − y2, z1 − z2) is negative.

• The label of a triplet T is the smallest triplet whose values are all positive and whose
characteristic is equal to the characteristic of T .

A measured triplet is a triplet which is a subsequence of the measurement sequence. That is,
the elements of the triplet appear in the measurement sequence in the same order they appear
in the triplet, but in the sequence they do not necessarily follow each other.

Before they are analyzed, the measured triplets are grouped according to their labels. The
management wants to know in advance the set of labels of all measured triplets.

Input Specification

The first line contains one integer N (3 ≤ N ≤ 2 · 105), the number of measurements. The next
line contains N integers x1, x2, . . . , xN (1 ≤ xi ≤ 109), each representing one measurement.

Output Specification

Print, in the increasing order, all different labels of all measured triplets which can be obtained
from the given sequence of measurements, one per line. A label should be printed with no spaces
between its consecutive elements.



Sample Input 1

5

1 2 3 4 5

Output for Sample Input 1

123

Sample Input 2

6

5 4 9 1 7 4

Output for Sample Input 2

121

132

211

212

213

231

312

321


