
Czech Technical University in Prague

ACM ICPC sponsored by IBM

Central Europe Regional Contest 2011

Stack Machine Programmer

program.c, program.C, program.java

Many ciphers can be computed much faster using various machines and automata. The trouble
with such machines is that someone has to write programs for them. Just imagine, how easy
it would be if we could write a program that would be able to write another programs. In this
contest problem, we will (for a while) ignore the fact that such a “universal program” is not
possible. And also another fact that most of us would lose our jobs if it existed.

Your task is to write a program that will automatically generate programs for the stack machine
defined in problem execute.

Input Specification

The input contains several test cases. Each test case starts with an integer number N (1 ≤ N ≤

5), specifying the number of inputs your program will process. The next N lines contain two
integer numbers each, Vi and Ri. Vi (0 ≤ Vi ≤ 10) is the input value and Ri (0 ≤ Ri ≤ 20) is
the required output for that input value. All input values will be distinct.

Each test case is followed by one empty line. The input is terminated by a line containing one
zero in place of the number of inputs.

Output Specification

For each test case, generate any program that produces the correct output values for all of the
inputs. It means, if the program is executed with the stack initially containing only the input
value Vi, after its successful execution, the stack must contain one single value Ri.

Your program must strictly satisfy all conditions described in the specification of the problem
execute, including the precise formatting, amount of whitespace, maximal program length, limit
on numbers, stack size, and so on. Of course, the program must not generate a failure.

Print one empty line after each program, including the last one.



Sample Input

3

1 3

2 6

3 11

1

1 1

2

2 4

10 1

0

Output for Sample Input

DUP

MUL

NUM 2

ADD

END

END

NUM 3

MOD

DUP

MUL

END


