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Solution sketches

Disclaimer This is an unofficial analysis of some possible ways to solve the problems of the ACM
ICPC World Finals 2012. Any error in this text is my error. Should you find such an error, I would
be happy to hear about it at austrin@kth.se.

Also, note that these sketches are just that—sketches. They are not intended to give a complete
solution, but rather to outline some approach that can be used to solve the problem. If some of the
terminology or algorithms mentioned below are not familiar to you, your favorite search engine should
be able to help.

Finally, I want to stress that while I’m the one who has written this document, I do not take credit
for the ideas behind these solutions—they come from many different people.

— Per Austrin

Summary

My guesstimated order for the problems to be solved was BKECLGDAFIHJ. The actual order
in which the problems were solved was BDKLCEGIFA, with HJ left unsolved, which means
I was less off than usual though I certainly overestimated problem D and underestimated
problem E. In terms of number of teams that ended up solving each problem, the numbers
were:

Problem A B C D E F G H I J K L
Solved 2 110 76 96 31 2 8 0 11 0 67 16
Submissions 51 202 251 278 300 29 45 12 113 0 289 90

In total there were 419 Accepted submissions, 924 Wrong Answer submissions, 243 Time
Limit Exceeded submissions and 74 Run Time Errors. The most popular language was C++
by a wide margin: 1459 submissions compared to 220 for Java. There was also one single
submission made in C (which was accepted, on problem B).

Congratulations to St. Petersburg State University of IT, Mechanics and Optics, the 2012
ICPC World Champions!

Problem A: Asteroid Rangers

This problem is a variant of the so-called kinetic spanning tree problem (though this knowl-
edge is pretty much irrelevant for solving the problem). The main observation is that the
only time the minimum spanning tree could possibly change is when the distances d(i1, j1)
and d(i2, j2) between two pairs of asteroids become equal. Finding these times for two given
pairs (i1, j1) and (i2, j2) just amounts to solving a quadratic equation. Thus, there are at most
2((

n
2)
2 ) ≤ 1 499 400 possible times when the spanning tree switches.
We go through these times in increasing order of time. Consider a time t at which two

pairs (i1, j1), (i2, j2) become equidistant. If exactly one of the two pairs, say (i1, j1) is an edge
in the current spanning tree, there is a possibility that it is switched for (i2, j2) at time t (this
happens exactly if (i1, j1) is on the path from i2 to j2 in the current tree, and d(i2, j2) becomes



smaller than d(i1, j1) after time t). The easiest way to check this is to simply recompute the
spanning tree at time t + 0.5 · 10−6 and see if it changed (the problem statement guarantees
that the MST can not change more than once in the interval between t and t + 0.5 · 10−6).

In principle this gives an O(n6) solution (if using a quadratic MST implementation), but
it should be pretty clear that the check for whether one of the pairs is in the tree cuts down
actual runtime bound significantly—heuristically one would only have to consider at most
O(n3) of the O(n4) candidate switch times. Incidentally, it seems very hard to create cases
where the answer is more than a few hundred (at least we didn’t figure out how to do it).

Problem B: Curvy Little Bottles

This was one of the easiest problems. The volume up to point x is simply

V(x) =
∫ x

t=xlow

P(x)dx =
n

∑
i=0

ai

i + 1
(xi+1 − xi+1

low),

and to find the value of x for which V(x) is some multiple of inc one can just binary search.

Problem C: Bus Tour

This is a variant of the TSP problem, with some non-standard constraints on the tour. For
standard TSP there is a well-known O(n22n) solution using dynamic programming. It turns
out that we can achieve the same time complexity for this problem but we need to do a little
more work.

Let s be either the headquarters or the attraction, X be a subset of hotels, and i ∈ X be
some hotel. Similarly to the usual DP solution, define C(X, s, i) to be the minimum cost of a
path that starts in s, goes through all the nodes in X, and ends in i. All such values can be
computed using dynamic programming in time O(n22n).

Next, go over all subsets X of size bh/2c and compute the length of the minimum tour
which uses this specific subset as the first bh/2c hotels. Given X, the length of the tour can be
computed by composing four paths of the form above (this uses that the graph is undirected;
if the graph was directed one would have to compute the length of paths that also end at the
headquarters/attraction).

Problem D: Fibonacci Words

There’s a relatively straightforward dynamic programming solution which is probably the
first one typically comes up with, but here’s a much cooler solution found by Derek Kisman:
we can think of the process of going from F(n − 1) to F(n) as a string replacement rule:
every 1 becomes replaced by 10, and every 0 becomes replaced by a 1. In order to compute
the number of occurrences of p in F(n), we can apply these rules backwards to obtain a
shorter string p′, and the task is now to find the number of occurrences of p′ in F(n− 1) (if p
ended in a 1 there are two possibilities for p′ since we don’t know whether that last 1 came
from a 1 or a 0 in F(n− 1)). Recursing this process, we are ultimately looking for the number
of occurences of either 1 or 0 in F(n′) for some n′ < n, which simply equals f (n − 1) and
f (n− 2), respectively.
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Problem E: Infiltration

In graph-theoretic terms, the problem asks for a minimum dominating set in a tournament.
The solution is essentially just exhaustive search, and the main difficulty is to realize that it
works. It is not hard to prove that a simple greedy algorithm always produces a dominating
set of size at most 6. Therefore, we can start by computing the greedy solution and then
trying all smaller sets of vertices (there are at most ∑5

i=1 (
75
i ) = 18 545 215 such sets). To

make it fast enough, one should use bitmasks for quickly checking whether a given set is a
solution.

In fact, the largest possible answer is actually only 5, so the greedy step is not needed.
But proving this is not easy and knowing it is of course not necessary to solve the problem.

Problem F: Keys

Despite its relatively straightforward statement, this was a somewhat nasty problem with
several special cases. Let us start with key cost. Whenever there are keys of both type on the
same ring, one of the key types has to be “evacuated”. Typically, we want to evacuate the
key that is the least frequent on the ring (in case both are equally frequent we will try both
possibilities; this happens for at most 13 rings). However, if this results in no free rings for
the evacuated keys we have to reserve some ring for the evacuated keys (again we can try
all possibilities). Another special case, illustrated by the sample data, is that if there is only
one ring and both types of keys then the problem is impossible.

Once the key conflicts have been resolved, we can compute the ring costs by standard
dynamic programming.

Problem G: Minimum Cost Flow

The first step is to figure out where to put the water pressure level. Or rather, to blindly try
all possibilities for the water pressure, which incurs a factor of N on the running time.

Given the water level, consider the induced subgraph on the set of points that are be-
low water. This consists of a set of connected components C1, . . . , Cr, which we can think
of as forming a (complete, weighted) graph G, in which the distance from component C1 to
component C2 is the minimum distance between a point in C1 and a point in C2 which both
have an available pipe hole. We want to find a path from the component containing s (say,
C1), to the component containing t (say, Cr), possibly using some intermediate components
at shortcuts. The total cost of the path is the sum of distances of edges used, plus the cost
of plugging the holes in the used components. The cost of plugging the holes in some in-
termediate component Ci is 0.5 · (#{open holes in Ci} − 2), because all holes except the two
that we use to connect Ci to the previous and next component need to be plugged. Similar
calculations apply for the components C1 and Cr. Note that intermediate components must
have at least two holes (and the source and destination components must have at least one
hole). A special case has to be dealt with: when s and t are in the same component, no path
is needed and the plugging cost is just 0.5 · #{holes in C1}.
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Problem H: Room Service

This problem can be solved with dynamic programming and some geometry. First, it is
intuitively clear (but a bit tricky to prove) that the edges should be visited in order, and we
can guess which of the N edges we visit first.

Suppose for a while that the cleaning robot’s path does not visit any of the corners of
the polygon. Then, every time the robot “bounces” against an edge of the polygon, the
incoming angle of the robot’s path should equal the outgoing angle. With this observation,
one can, given a starting point and a destination point and a sequence of edges to bounce
against, compute the path (and in particular the length) the robot should take by reflecting
the destination point around the bounce segments in reverse order. After these reflections,
the path of the robot is “unwinded” to the straight line from the starting point to the new
position of the destination.

However, when we are at a corner, the notion of the incoming angle breaks down and
we can actually go off in any direction. This suggests a dynamic program where the state
is what vertex we are currently at (either the robot’s starting point or one of the polygon
vertices). Given that we are visiting the edges in order and we know which edge we visit
first, the current vertex completely determines which edges are left to visit. To compute the
answer from this position, we try all possibilities for the next vertex to visit, and compute
the cost of bouncing all the way there as described in the previous paragraph (but note that
it might not be possible from the current vertex to some subsequent vertex because it would
result in the path going outside the polygon). This gives an O(N3) solution.

Problem I: A Safe Bet

First, we trace the route of the laser beam from the entry through the maze. This can be done
in O(N log N) time (where we let N = n+m be the total number of mirrors) by keeping track
of dictionary of the mirror positions in each row and column. This trace can be represented
as a set of horizontal and vertical line segments.

If the laser beam exits at the exit, we’re done. Otherwise, we run the same trace back-
wards from the exit position, giving a second set of horizontal and vertical line segments.

After this, the set of positions where a mirror can be inserted are simply all intersection
points between line segments from the two traces. This can be found in O(N log N) time
using a standard sweepline approach, though one needs a datastructure that can do quick
range counting, e.g., a Fenwick tree.

Problem J: Shortest Flight Path

We construct the following graph: the vertices are all the airports, together with all intersec-
tion points between the “safety circles” around the airports (i.e., all points that are at distance
R from two airports). There are at most 2(N

2 ) ≤ 600 such intersection points. There is an edge
between two points if the great circle arc between the two points lies completely inside the
allowed flight region (i.e., the union of the “safety circles”).

The main difficulty of the problem lies in constructing this graph, after that it is fairly
straightforward graph problem which we leave to the reader. First, we need to find the
intersection points, i.e., compute the intersections of two circles in 3D. which is a bit messy.
Second, we need to check if the arc between two points lies inside the allowed flight region.
This can be done by again using circle-circle-intersections to compute which part (if any)
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of the arc is covered by each airport, and then computing the union of all these parts. This
gives an O(N5 log N) algorithm (though since N is so small, using a quadratic interval union
which gives an O(N6) solution works fine).

Problem K: Stacking Plates

If all plates had different sizes, the problem would be completely trivial: take all the
plates, sort them in order (but keep track of which stack they came from). Then, the number
of splits we have to do is the number of positions where we switch between stacks (in the
sorted list of plates). The number of join operations is always #splits+ #stacks− 1, so finding
the number of splits is enough.

If there are ties, we get groups of plates that are of the same size, and we have to figure
out in which order to put them so as to minimize the number of positions where we switch
between stacks. This can be done with dynamic programming.

Problem L: Takeover Wars

The main observations that need to be made are the following:

1. If doing a takeover, we should always take over the largest company of the opponent
(in particular, if we can not take over that company we should not do a takeover).

2. If doing a merge, we should always merge the two largest companies that we have.

While intuitively obvious, proving them is a bit tedious, so have fun with that.
With these observations, one can try a simple recursive tree search. This actually works

(as long as you always try doing a takeover, when possible, before doing a merge), except
that you will probably run out of stack size and crash.

Why should it work? Well, here are two more observations (easy to prove given the first
two):

3 If a takeover is possible at any time after a merge move has been made, then that
takeover will be winning.

4 After a takover, the opponent will be forced to merge.

Taken together, this implies that it is only the first move of the game in which there is
actually a choice. Thus, one can just try the (at most) two possibilities for that move and
then easily simulate the rest of the game.
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